Recent studies of 5-fluorouracil resistance in pancreatic cancer
Resistance to 5-fluorouracil(5-FU), an important anticancer drug, is a serious challenge in the treatment of pancreatic cancer. Equilibrative nucleoside transporter 1 and multidrug-resistance protein(MRP) 5 and MRP8, rather than P-glycoprotein, play important roles in 5-FU transport. Thymidylate syn...
Gespeichert in:
Veröffentlicht in: | World journal of gastroenterology : WJG 2014-11, Vol.20 (42), p.15682-15690 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Resistance to 5-fluorouracil(5-FU), an important anticancer drug, is a serious challenge in the treatment of pancreatic cancer. Equilibrative nucleoside transporter 1 and multidrug-resistance protein(MRP) 5 and MRP8, rather than P-glycoprotein, play important roles in 5-FU transport. Thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase and thymidine phosphorylase are four key enzymes involved in 5-FU metabolism. Other metabolic enzymes, including uridine monophosphate synthetase, also contribute to chemoresistance. Intracellular signaling pathways are an integrated network, and nuclear factor kappa-light-chain-enhancer of activated B cells, AKT and extracellular signal-regulated kinases are signaling pathways that are particularly relevant to 5-FU resistance. In addition, recent reports indicate that STAT-3 is a crucial survival protein. Proteomic assays provide a powerful tool for identifying target proteins and understanding the role of micro RNAs and stromal factors to facilitate the development of strategies to combat 5-FU resistance. |
---|---|
ISSN: | 1007-9327 2219-2840 |
DOI: | 10.3748/wjg.v20.i42.15682 |