Role of the carotid body chemoreceptors in baroreflex control of blood pressure during hypoglycaemia in humans

New Findings What is the central question of this study? Activation of the carotid body chemoreceptors with hypoxia alters baroreceptor‐mediated responses in humans. We aimed to examine whether this relationship can be translated to other chemoreceptor stimuli (i.e. hypoglycaemia). What is the main...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental physiology 2014-04, Vol.99 (4), p.640-650
Hauptverfasser: Limberg, Jacqueline K., Taylor, Jennifer L., Dube, Simmi, Basu, Rita, Basu, Ananda, Joyner, Michael J., Wehrwein, Erica A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New Findings What is the central question of this study? Activation of the carotid body chemoreceptors with hypoxia alters baroreceptor‐mediated responses in humans. We aimed to examine whether this relationship can be translated to other chemoreceptor stimuli (i.e. hypoglycaemia). What is the main finding and its importance? We show that hypoglycaemia‐mediated changes in heart rate variability and baroreflex sensitivity cannot be attributed exclusively to the carotid chemoreceptors; however, the chemoreceptors play a role in resetting the baroreflex working range during hypoglycaemia. These results provide a potential mechanism for impaired glycaemic control and increased risk of cardiac arrhythmias in patients with carotid chemoreceptor overactivity (i.e. sleep apnoea). Activation of the carotid body chemoreceptors with hypoxia alters baroreceptor‐mediated responses. We aimed to examine whether this relationship can be translated to other chemoreceptor stimuli (i.e. hypoglycaemia) by testing the following hypotheses: (i) activation of the carotid body chemoreceptors with hypoglycaemia would reduce spontaneous cardiac baroreflex sensitivity (sCBRS) in healthy humans; and (ii) desensitization of the carotid chemoreceptors with hyperoxia would restore sCBRS to baseline levels during hypoglycaemia. Ten young healthy adults completed two 180 min hyperinsulinaemic [2 mU (kg fat‐free mass)−1 min−1], hypoglycaemic (∼3.2 μmol ml−1) clamps, separated by at least 1 week and randomized to normoxia (arterial partial pressure of O2, 122 ± 10 mmHg) or hyperoxia (arterial partial pressure of O2, 424 ± 123 mmHg; to blunt activation of the carotid body glomus cells). Changes in heart rate, blood pressure, plasma catecholamines, heart rate variability (HRV) and sCBRS were assessed. During hypoglycaemia, HRV and sCBRS were reduced (P 
ISSN:0958-0670
1469-445X
DOI:10.1113/expphysiol.2013.076869