Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarization

Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2014-01, Vol.2014 (2014), p.1-14
Hauptverfasser: Dougherty, Edward T., Vogel, Frank, Turner, James C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 2014
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2014
creator Dougherty, Edward T.
Vogel, Frank
Turner, James C.
description Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model’s validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model’s predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.
doi_str_mv 10.1155/2014/360179
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4227389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1626166582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-72ffed48fdc264e274fe749f0dc96e01ec6adbdcfbf4fac37b6ad6c4e2abf3273</originalsourceid><addsrcrecordid>eNqNkUFvFSEUhSdGY2t15d6wNJpnYYaBGRcm5rXVJq0urIk7wsClD8PAKww29Uf5G2U69aXduYELfPcc4FTVS4LfEdK2hzUm9LBhmPD-UbVPOO1WjJPu8a7GP_aqZyn9xLglvCVPq726pZj2Ld6v_pxnN9mkpAO0DnnrrL9EwaCLKH1SZbDSoSMbQU1onWMEP6Fvkx2zk5MNHk0BfYEcS3XsChODvvFytCq9R-dBw63ctAF06o3L4BXM4vPGA4Ol1yp0YsFpVNQW0dkbtsHJaH_f-j2vnhjpEry4mw-q7yfHF-vPq7Ovn07XH89Wijb9tOK1MaBpZ7SqGYWaUwOc9gZr1TPABBSTetDKDIYaqRo-lDVThZSDaWreHFQfFt1tHkbQqjw7Sie20Y4y3oggrXh44u1GXIZfgtalu-uLwOs7gRiuMqRJjOWXwTnpIeQkCKsZYazt6oK-XVAVQ0oRzM6GYDEnLOaExZJwoV_dv9mO_RdpAd4swMZ6La_t_6lBQcDIezBhvOuav-rnvvM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626166582</pqid></control><display><type>article</type><title>Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarization</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Dougherty, Edward T. ; Vogel, Frank ; Turner, James C.</creator><contributor>Migliore, Michele</contributor><creatorcontrib>Dougherty, Edward T. ; Vogel, Frank ; Turner, James C. ; Migliore, Michele</creatorcontrib><description>Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model’s validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model’s predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2014/360179</identifier><identifier>PMID: 25404950</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Action Potentials ; Anisotropy ; Brain - pathology ; Brain - physiology ; Computer Simulation ; Electric Stimulation ; Electrodes ; Finite Element Analysis ; Head ; Humans ; Kinetics ; Magnetic Resonance Imaging - methods ; Neurons - physiology ; Signal Processing, Computer-Assisted ; Transcranial Direct Current Stimulation - methods</subject><ispartof>Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-14</ispartof><rights>Copyright © 2014 Edward T. Dougherty et al.</rights><rights>Copyright © 2014 Edward T. Dougherty et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-72ffed48fdc264e274fe749f0dc96e01ec6adbdcfbf4fac37b6ad6c4e2abf3273</citedby><cites>FETCH-LOGICAL-c439t-72ffed48fdc264e274fe749f0dc96e01ec6adbdcfbf4fac37b6ad6c4e2abf3273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227389/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227389/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25404950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Migliore, Michele</contributor><creatorcontrib>Dougherty, Edward T.</creatorcontrib><creatorcontrib>Vogel, Frank</creatorcontrib><creatorcontrib>Turner, James C.</creatorcontrib><title>Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarization</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model’s validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model’s predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.</description><subject>Action Potentials</subject><subject>Anisotropy</subject><subject>Brain - pathology</subject><subject>Brain - physiology</subject><subject>Computer Simulation</subject><subject>Electric Stimulation</subject><subject>Electrodes</subject><subject>Finite Element Analysis</subject><subject>Head</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Neurons - physiology</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Transcranial Direct Current Stimulation - methods</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUFvFSEUhSdGY2t15d6wNJpnYYaBGRcm5rXVJq0urIk7wsClD8PAKww29Uf5G2U69aXduYELfPcc4FTVS4LfEdK2hzUm9LBhmPD-UbVPOO1WjJPu8a7GP_aqZyn9xLglvCVPq726pZj2Ld6v_pxnN9mkpAO0DnnrrL9EwaCLKH1SZbDSoSMbQU1onWMEP6Fvkx2zk5MNHk0BfYEcS3XsChODvvFytCq9R-dBw63ctAF06o3L4BXM4vPGA4Ol1yp0YsFpVNQW0dkbtsHJaH_f-j2vnhjpEry4mw-q7yfHF-vPq7Ovn07XH89Wijb9tOK1MaBpZ7SqGYWaUwOc9gZr1TPABBSTetDKDIYaqRo-lDVThZSDaWreHFQfFt1tHkbQqjw7Sie20Y4y3oggrXh44u1GXIZfgtalu-uLwOs7gRiuMqRJjOWXwTnpIeQkCKsZYazt6oK-XVAVQ0oRzM6GYDEnLOaExZJwoV_dv9mO_RdpAd4swMZ6La_t_6lBQcDIezBhvOuav-rnvvM</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Dougherty, Edward T.</creator><creator>Vogel, Frank</creator><creator>Turner, James C.</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarization</title><author>Dougherty, Edward T. ; Vogel, Frank ; Turner, James C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-72ffed48fdc264e274fe749f0dc96e01ec6adbdcfbf4fac37b6ad6c4e2abf3273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials</topic><topic>Anisotropy</topic><topic>Brain - pathology</topic><topic>Brain - physiology</topic><topic>Computer Simulation</topic><topic>Electric Stimulation</topic><topic>Electrodes</topic><topic>Finite Element Analysis</topic><topic>Head</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Neurons - physiology</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Transcranial Direct Current Stimulation - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dougherty, Edward T.</creatorcontrib><creatorcontrib>Vogel, Frank</creatorcontrib><creatorcontrib>Turner, James C.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dougherty, Edward T.</au><au>Vogel, Frank</au><au>Turner, James C.</au><au>Migliore, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarization</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model’s validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model’s predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>25404950</pmid><doi>10.1155/2014/360179</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-14
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4227389
source MEDLINE; Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Action Potentials
Anisotropy
Brain - pathology
Brain - physiology
Computer Simulation
Electric Stimulation
Electrodes
Finite Element Analysis
Head
Humans
Kinetics
Magnetic Resonance Imaging - methods
Neurons - physiology
Signal Processing, Computer-Assisted
Transcranial Direct Current Stimulation - methods
title Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Coupling%20of%20Transcranial%20Direct%20Current%20Stimulation%20to%20Neuron%20Electrodynamics:%20Modeling%20the%20Influence%20of%20the%20Transcranial%20Electric%20Field%20on%20Neuronal%20Depolarization&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Dougherty,%20Edward%20T.&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2014/360179&rft_dat=%3Cproquest_pubme%3E1626166582%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626166582&rft_id=info:pmid/25404950&rfr_iscdi=true