Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarization
Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neur...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2014-01, Vol.2014 (2014), p.1-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 2014 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2014 |
creator | Dougherty, Edward T. Vogel, Frank Turner, James C. |
description | Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model’s validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model’s predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community. |
doi_str_mv | 10.1155/2014/360179 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4227389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1626166582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-72ffed48fdc264e274fe749f0dc96e01ec6adbdcfbf4fac37b6ad6c4e2abf3273</originalsourceid><addsrcrecordid>eNqNkUFvFSEUhSdGY2t15d6wNJpnYYaBGRcm5rXVJq0urIk7wsClD8PAKww29Uf5G2U69aXduYELfPcc4FTVS4LfEdK2hzUm9LBhmPD-UbVPOO1WjJPu8a7GP_aqZyn9xLglvCVPq726pZj2Ld6v_pxnN9mkpAO0DnnrrL9EwaCLKH1SZbDSoSMbQU1onWMEP6Fvkx2zk5MNHk0BfYEcS3XsChODvvFytCq9R-dBw63ctAF06o3L4BXM4vPGA4Ol1yp0YsFpVNQW0dkbtsHJaH_f-j2vnhjpEry4mw-q7yfHF-vPq7Ovn07XH89Wijb9tOK1MaBpZ7SqGYWaUwOc9gZr1TPABBSTetDKDIYaqRo-lDVThZSDaWreHFQfFt1tHkbQqjw7Sie20Y4y3oggrXh44u1GXIZfgtalu-uLwOs7gRiuMqRJjOWXwTnpIeQkCKsZYazt6oK-XVAVQ0oRzM6GYDEnLOaExZJwoV_dv9mO_RdpAd4swMZ6La_t_6lBQcDIezBhvOuav-rnvvM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626166582</pqid></control><display><type>article</type><title>Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarization</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Dougherty, Edward T. ; Vogel, Frank ; Turner, James C.</creator><contributor>Migliore, Michele</contributor><creatorcontrib>Dougherty, Edward T. ; Vogel, Frank ; Turner, James C. ; Migliore, Michele</creatorcontrib><description>Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model’s validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model’s predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2014/360179</identifier><identifier>PMID: 25404950</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Action Potentials ; Anisotropy ; Brain - pathology ; Brain - physiology ; Computer Simulation ; Electric Stimulation ; Electrodes ; Finite Element Analysis ; Head ; Humans ; Kinetics ; Magnetic Resonance Imaging - methods ; Neurons - physiology ; Signal Processing, Computer-Assisted ; Transcranial Direct Current Stimulation - methods</subject><ispartof>Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-14</ispartof><rights>Copyright © 2014 Edward T. Dougherty et al.</rights><rights>Copyright © 2014 Edward T. Dougherty et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-72ffed48fdc264e274fe749f0dc96e01ec6adbdcfbf4fac37b6ad6c4e2abf3273</citedby><cites>FETCH-LOGICAL-c439t-72ffed48fdc264e274fe749f0dc96e01ec6adbdcfbf4fac37b6ad6c4e2abf3273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227389/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227389/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25404950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Migliore, Michele</contributor><creatorcontrib>Dougherty, Edward T.</creatorcontrib><creatorcontrib>Vogel, Frank</creatorcontrib><creatorcontrib>Turner, James C.</creatorcontrib><title>Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarization</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model’s validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model’s predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.</description><subject>Action Potentials</subject><subject>Anisotropy</subject><subject>Brain - pathology</subject><subject>Brain - physiology</subject><subject>Computer Simulation</subject><subject>Electric Stimulation</subject><subject>Electrodes</subject><subject>Finite Element Analysis</subject><subject>Head</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Neurons - physiology</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Transcranial Direct Current Stimulation - methods</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUFvFSEUhSdGY2t15d6wNJpnYYaBGRcm5rXVJq0urIk7wsClD8PAKww29Uf5G2U69aXduYELfPcc4FTVS4LfEdK2hzUm9LBhmPD-UbVPOO1WjJPu8a7GP_aqZyn9xLglvCVPq726pZj2Ld6v_pxnN9mkpAO0DnnrrL9EwaCLKH1SZbDSoSMbQU1onWMEP6Fvkx2zk5MNHk0BfYEcS3XsChODvvFytCq9R-dBw63ctAF06o3L4BXM4vPGA4Ol1yp0YsFpVNQW0dkbtsHJaH_f-j2vnhjpEry4mw-q7yfHF-vPq7Ovn07XH89Wijb9tOK1MaBpZ7SqGYWaUwOc9gZr1TPABBSTetDKDIYaqRo-lDVThZSDaWreHFQfFt1tHkbQqjw7Sie20Y4y3oggrXh44u1GXIZfgtalu-uLwOs7gRiuMqRJjOWXwTnpIeQkCKsZYazt6oK-XVAVQ0oRzM6GYDEnLOaExZJwoV_dv9mO_RdpAd4swMZ6La_t_6lBQcDIezBhvOuav-rnvvM</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Dougherty, Edward T.</creator><creator>Vogel, Frank</creator><creator>Turner, James C.</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarization</title><author>Dougherty, Edward T. ; Vogel, Frank ; Turner, James C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-72ffed48fdc264e274fe749f0dc96e01ec6adbdcfbf4fac37b6ad6c4e2abf3273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials</topic><topic>Anisotropy</topic><topic>Brain - pathology</topic><topic>Brain - physiology</topic><topic>Computer Simulation</topic><topic>Electric Stimulation</topic><topic>Electrodes</topic><topic>Finite Element Analysis</topic><topic>Head</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Neurons - physiology</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Transcranial Direct Current Stimulation - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dougherty, Edward T.</creatorcontrib><creatorcontrib>Vogel, Frank</creatorcontrib><creatorcontrib>Turner, James C.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dougherty, Edward T.</au><au>Vogel, Frank</au><au>Turner, James C.</au><au>Migliore, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarization</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model’s validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model’s predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>25404950</pmid><doi>10.1155/2014/360179</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-14 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4227389 |
source | MEDLINE; Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Action Potentials Anisotropy Brain - pathology Brain - physiology Computer Simulation Electric Stimulation Electrodes Finite Element Analysis Head Humans Kinetics Magnetic Resonance Imaging - methods Neurons - physiology Signal Processing, Computer-Assisted Transcranial Direct Current Stimulation - methods |
title | Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Coupling%20of%20Transcranial%20Direct%20Current%20Stimulation%20to%20Neuron%20Electrodynamics:%20Modeling%20the%20Influence%20of%20the%20Transcranial%20Electric%20Field%20on%20Neuronal%20Depolarization&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Dougherty,%20Edward%20T.&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2014/360179&rft_dat=%3Cproquest_pubme%3E1626166582%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626166582&rft_id=info:pmid/25404950&rfr_iscdi=true |