Synthetic virology: engineering viruses for gene delivery

The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2014-11, Vol.6 (6), p.548-558
Hauptverfasser: Guenther, Caitlin M., Kuypers, Brianna E., Lam, Michael T., Robinson, Tawana M., Zhao, Julia, Suh, Junghae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558
container_issue 6
container_start_page 548
container_title Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
container_volume 6
creator Guenther, Caitlin M.
Kuypers, Brianna E.
Lam, Michael T.
Robinson, Tawana M.
Zhao, Julia
Suh, Junghae
description The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or ‘bionic’ viruses, feature engineered components, or ‘parts’, that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man‐made polymers or inorganic nanoparticles). Various design strategies—rational, combinatorial, and pseudo‐rational—have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss‐cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavors will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine. WIREs Nanomed Nanobiotechnol 2014, 6:548–558. doi: 10.1002/wnan.1287 This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures
doi_str_mv 10.1002/wnan.1287
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4227300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1635017376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5797-8fad23ab5cda6971df10719e2dd700030c146f39b6dfa55c2b1b78c5e2b52d473</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EomXhwBdAkbjAIa3HjuM1B6Sqoi3Sqkj8q8TFcpJJ6pK1i51sybfH0S4rQAIhH8by_OaN_B4hT4EeAaXs-M4ZdwRsKe-RQ1Bc5ZQWcH93FwDlAXkU4w2lZVEy8ZAcMAFKKMYOifowueEaB1tnGxt877vpVYausw4xWNfNr2PEmLU-ZB06zBrs7QbD9Jg8aE0f8cmuLsinszcfTy_y1bvzt6cnq7wWUsl82ZqGcVOJujGlktC0QCUoZE0jKaWc1lCULVdV2bRGiJpVUMllLZBVgjWF5Avyeqt7O1ZrbGp0QzC9vg12bcKkvbH6946z17rzG10wJnnasCAvdgLBfxsxDnptY419bxz6MWoouaAguSz_A01mJqMVT-jzP9AbPwaXnNCg1Lwa0vkXJaksCgpUJOrllqqDjzFgu_8dUD0nrOeE9ZxwYp_9asee_BlpAo63wJ3tcfq7kr66PLncSebbCRsH_L6fMOGrLpMtIpHnegXq89XZl_f6gv8AcX2-tg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1707440105</pqid></control><display><type>article</type><title>Synthetic virology: engineering viruses for gene delivery</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guenther, Caitlin M. ; Kuypers, Brianna E. ; Lam, Michael T. ; Robinson, Tawana M. ; Zhao, Julia ; Suh, Junghae</creator><creatorcontrib>Guenther, Caitlin M. ; Kuypers, Brianna E. ; Lam, Michael T. ; Robinson, Tawana M. ; Zhao, Julia ; Suh, Junghae</creatorcontrib><description>The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or ‘bionic’ viruses, feature engineered components, or ‘parts’, that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man‐made polymers or inorganic nanoparticles). Various design strategies—rational, combinatorial, and pseudo‐rational—have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss‐cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavors will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine. WIREs Nanomed Nanobiotechnol 2014, 6:548–558. doi: 10.1002/wnan.1287 This article is categorized under: Biology-Inspired Nanomaterials &gt; Protein and Virus-Based Structures</description><identifier>ISSN: 1939-5116</identifier><identifier>EISSN: 1939-0041</identifier><identifier>DOI: 10.1002/wnan.1287</identifier><identifier>PMID: 25195922</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Biological evolution ; Bionics ; Capsids ; Combinatorial analysis ; Expression vectors ; Gene therapy ; Gene transfer ; Genes ; Genetic Engineering ; Genetic Therapy ; Genetic Vectors ; Humans ; Mice ; Nanomaterials ; Nanomedicine ; Nanoparticles ; Nanotechnology ; Nanotechnology devices ; Polymers ; Synthetic Biology ; Transgenes ; Virology ; Viruses</subject><ispartof>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2014-11, Vol.6 (6), p.548-558</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5797-8fad23ab5cda6971df10719e2dd700030c146f39b6dfa55c2b1b78c5e2b52d473</citedby><cites>FETCH-LOGICAL-c5797-8fad23ab5cda6971df10719e2dd700030c146f39b6dfa55c2b1b78c5e2b52d473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwnan.1287$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwnan.1287$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25195922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guenther, Caitlin M.</creatorcontrib><creatorcontrib>Kuypers, Brianna E.</creatorcontrib><creatorcontrib>Lam, Michael T.</creatorcontrib><creatorcontrib>Robinson, Tawana M.</creatorcontrib><creatorcontrib>Zhao, Julia</creatorcontrib><creatorcontrib>Suh, Junghae</creatorcontrib><title>Synthetic virology: engineering viruses for gene delivery</title><title>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</title><addtitle>WIREs Nanomed Nanobiotechnol</addtitle><description>The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or ‘bionic’ viruses, feature engineered components, or ‘parts’, that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man‐made polymers or inorganic nanoparticles). Various design strategies—rational, combinatorial, and pseudo‐rational—have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss‐cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavors will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine. WIREs Nanomed Nanobiotechnol 2014, 6:548–558. doi: 10.1002/wnan.1287 This article is categorized under: Biology-Inspired Nanomaterials &gt; Protein and Virus-Based Structures</description><subject>Animals</subject><subject>Biological evolution</subject><subject>Bionics</subject><subject>Capsids</subject><subject>Combinatorial analysis</subject><subject>Expression vectors</subject><subject>Gene therapy</subject><subject>Gene transfer</subject><subject>Genes</subject><subject>Genetic Engineering</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors</subject><subject>Humans</subject><subject>Mice</subject><subject>Nanomaterials</subject><subject>Nanomedicine</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotechnology devices</subject><subject>Polymers</subject><subject>Synthetic Biology</subject><subject>Transgenes</subject><subject>Virology</subject><subject>Viruses</subject><issn>1939-5116</issn><issn>1939-0041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9v1DAQxS0EomXhwBdAkbjAIa3HjuM1B6Sqoi3Sqkj8q8TFcpJJ6pK1i51sybfH0S4rQAIhH8by_OaN_B4hT4EeAaXs-M4ZdwRsKe-RQ1Bc5ZQWcH93FwDlAXkU4w2lZVEy8ZAcMAFKKMYOifowueEaB1tnGxt877vpVYausw4xWNfNr2PEmLU-ZB06zBrs7QbD9Jg8aE0f8cmuLsinszcfTy_y1bvzt6cnq7wWUsl82ZqGcVOJujGlktC0QCUoZE0jKaWc1lCULVdV2bRGiJpVUMllLZBVgjWF5Avyeqt7O1ZrbGp0QzC9vg12bcKkvbH6946z17rzG10wJnnasCAvdgLBfxsxDnptY419bxz6MWoouaAguSz_A01mJqMVT-jzP9AbPwaXnNCg1Lwa0vkXJaksCgpUJOrllqqDjzFgu_8dUD0nrOeE9ZxwYp_9asee_BlpAo63wJ3tcfq7kr66PLncSebbCRsH_L6fMOGrLpMtIpHnegXq89XZl_f6gv8AcX2-tg</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Guenther, Caitlin M.</creator><creator>Kuypers, Brianna E.</creator><creator>Lam, Michael T.</creator><creator>Robinson, Tawana M.</creator><creator>Zhao, Julia</creator><creator>Suh, Junghae</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7U9</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>201411</creationdate><title>Synthetic virology: engineering viruses for gene delivery</title><author>Guenther, Caitlin M. ; Kuypers, Brianna E. ; Lam, Michael T. ; Robinson, Tawana M. ; Zhao, Julia ; Suh, Junghae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5797-8fad23ab5cda6971df10719e2dd700030c146f39b6dfa55c2b1b78c5e2b52d473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological evolution</topic><topic>Bionics</topic><topic>Capsids</topic><topic>Combinatorial analysis</topic><topic>Expression vectors</topic><topic>Gene therapy</topic><topic>Gene transfer</topic><topic>Genes</topic><topic>Genetic Engineering</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors</topic><topic>Humans</topic><topic>Mice</topic><topic>Nanomaterials</topic><topic>Nanomedicine</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotechnology devices</topic><topic>Polymers</topic><topic>Synthetic Biology</topic><topic>Transgenes</topic><topic>Virology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guenther, Caitlin M.</creatorcontrib><creatorcontrib>Kuypers, Brianna E.</creatorcontrib><creatorcontrib>Lam, Michael T.</creatorcontrib><creatorcontrib>Robinson, Tawana M.</creatorcontrib><creatorcontrib>Zhao, Julia</creatorcontrib><creatorcontrib>Suh, Junghae</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guenther, Caitlin M.</au><au>Kuypers, Brianna E.</au><au>Lam, Michael T.</au><au>Robinson, Tawana M.</au><au>Zhao, Julia</au><au>Suh, Junghae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic virology: engineering viruses for gene delivery</atitle><jtitle>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</jtitle><addtitle>WIREs Nanomed Nanobiotechnol</addtitle><date>2014-11</date><risdate>2014</risdate><volume>6</volume><issue>6</issue><spage>548</spage><epage>558</epage><pages>548-558</pages><issn>1939-5116</issn><eissn>1939-0041</eissn><abstract>The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or ‘bionic’ viruses, feature engineered components, or ‘parts’, that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man‐made polymers or inorganic nanoparticles). Various design strategies—rational, combinatorial, and pseudo‐rational—have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss‐cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavors will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine. WIREs Nanomed Nanobiotechnol 2014, 6:548–558. doi: 10.1002/wnan.1287 This article is categorized under: Biology-Inspired Nanomaterials &gt; Protein and Virus-Based Structures</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>25195922</pmid><doi>10.1002/wnan.1287</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-5116
ispartof Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2014-11, Vol.6 (6), p.548-558
issn 1939-5116
1939-0041
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4227300
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Biological evolution
Bionics
Capsids
Combinatorial analysis
Expression vectors
Gene therapy
Gene transfer
Genes
Genetic Engineering
Genetic Therapy
Genetic Vectors
Humans
Mice
Nanomaterials
Nanomedicine
Nanoparticles
Nanotechnology
Nanotechnology devices
Polymers
Synthetic Biology
Transgenes
Virology
Viruses
title Synthetic virology: engineering viruses for gene delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20virology:%20engineering%20viruses%20for%20gene%20delivery&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Nanomedicine%20and%20nanobiotechnology&rft.au=Guenther,%20Caitlin%20M.&rft.date=2014-11&rft.volume=6&rft.issue=6&rft.spage=548&rft.epage=558&rft.pages=548-558&rft.issn=1939-5116&rft.eissn=1939-0041&rft_id=info:doi/10.1002/wnan.1287&rft_dat=%3Cproquest_pubme%3E1635017376%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1707440105&rft_id=info:pmid/25195922&rfr_iscdi=true