Synthetic virology: engineering viruses for gene delivery
The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate p...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2014-11, Vol.6 (6), p.548-558 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 558 |
---|---|
container_issue | 6 |
container_start_page | 548 |
container_title | Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology |
container_volume | 6 |
creator | Guenther, Caitlin M. Kuypers, Brianna E. Lam, Michael T. Robinson, Tawana M. Zhao, Julia Suh, Junghae |
description | The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or ‘bionic’ viruses, feature engineered components, or ‘parts’, that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man‐made polymers or inorganic nanoparticles). Various design strategies—rational, combinatorial, and pseudo‐rational—have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss‐cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavors will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine. WIREs Nanomed Nanobiotechnol 2014, 6:548–558. doi: 10.1002/wnan.1287
This article is categorized under:
Biology-Inspired Nanomaterials > Protein and Virus-Based Structures |
doi_str_mv | 10.1002/wnan.1287 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4227300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1635017376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5797-8fad23ab5cda6971df10719e2dd700030c146f39b6dfa55c2b1b78c5e2b52d473</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EomXhwBdAkbjAIa3HjuM1B6Sqoi3Sqkj8q8TFcpJJ6pK1i51sybfH0S4rQAIhH8by_OaN_B4hT4EeAaXs-M4ZdwRsKe-RQ1Bc5ZQWcH93FwDlAXkU4w2lZVEy8ZAcMAFKKMYOifowueEaB1tnGxt877vpVYausw4xWNfNr2PEmLU-ZB06zBrs7QbD9Jg8aE0f8cmuLsinszcfTy_y1bvzt6cnq7wWUsl82ZqGcVOJujGlktC0QCUoZE0jKaWc1lCULVdV2bRGiJpVUMllLZBVgjWF5Avyeqt7O1ZrbGp0QzC9vg12bcKkvbH6946z17rzG10wJnnasCAvdgLBfxsxDnptY419bxz6MWoouaAguSz_A01mJqMVT-jzP9AbPwaXnNCg1Lwa0vkXJaksCgpUJOrllqqDjzFgu_8dUD0nrOeE9ZxwYp_9asee_BlpAo63wJ3tcfq7kr66PLncSebbCRsH_L6fMOGrLpMtIpHnegXq89XZl_f6gv8AcX2-tg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1707440105</pqid></control><display><type>article</type><title>Synthetic virology: engineering viruses for gene delivery</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guenther, Caitlin M. ; Kuypers, Brianna E. ; Lam, Michael T. ; Robinson, Tawana M. ; Zhao, Julia ; Suh, Junghae</creator><creatorcontrib>Guenther, Caitlin M. ; Kuypers, Brianna E. ; Lam, Michael T. ; Robinson, Tawana M. ; Zhao, Julia ; Suh, Junghae</creatorcontrib><description>The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or ‘bionic’ viruses, feature engineered components, or ‘parts’, that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man‐made polymers or inorganic nanoparticles). Various design strategies—rational, combinatorial, and pseudo‐rational—have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss‐cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavors will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine. WIREs Nanomed Nanobiotechnol 2014, 6:548–558. doi: 10.1002/wnan.1287
This article is categorized under:
Biology-Inspired Nanomaterials > Protein and Virus-Based Structures</description><identifier>ISSN: 1939-5116</identifier><identifier>EISSN: 1939-0041</identifier><identifier>DOI: 10.1002/wnan.1287</identifier><identifier>PMID: 25195922</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animals ; Biological evolution ; Bionics ; Capsids ; Combinatorial analysis ; Expression vectors ; Gene therapy ; Gene transfer ; Genes ; Genetic Engineering ; Genetic Therapy ; Genetic Vectors ; Humans ; Mice ; Nanomaterials ; Nanomedicine ; Nanoparticles ; Nanotechnology ; Nanotechnology devices ; Polymers ; Synthetic Biology ; Transgenes ; Virology ; Viruses</subject><ispartof>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2014-11, Vol.6 (6), p.548-558</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5797-8fad23ab5cda6971df10719e2dd700030c146f39b6dfa55c2b1b78c5e2b52d473</citedby><cites>FETCH-LOGICAL-c5797-8fad23ab5cda6971df10719e2dd700030c146f39b6dfa55c2b1b78c5e2b52d473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwnan.1287$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwnan.1287$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25195922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guenther, Caitlin M.</creatorcontrib><creatorcontrib>Kuypers, Brianna E.</creatorcontrib><creatorcontrib>Lam, Michael T.</creatorcontrib><creatorcontrib>Robinson, Tawana M.</creatorcontrib><creatorcontrib>Zhao, Julia</creatorcontrib><creatorcontrib>Suh, Junghae</creatorcontrib><title>Synthetic virology: engineering viruses for gene delivery</title><title>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</title><addtitle>WIREs Nanomed Nanobiotechnol</addtitle><description>The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or ‘bionic’ viruses, feature engineered components, or ‘parts’, that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man‐made polymers or inorganic nanoparticles). Various design strategies—rational, combinatorial, and pseudo‐rational—have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss‐cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavors will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine. WIREs Nanomed Nanobiotechnol 2014, 6:548–558. doi: 10.1002/wnan.1287
This article is categorized under:
Biology-Inspired Nanomaterials > Protein and Virus-Based Structures</description><subject>Animals</subject><subject>Biological evolution</subject><subject>Bionics</subject><subject>Capsids</subject><subject>Combinatorial analysis</subject><subject>Expression vectors</subject><subject>Gene therapy</subject><subject>Gene transfer</subject><subject>Genes</subject><subject>Genetic Engineering</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors</subject><subject>Humans</subject><subject>Mice</subject><subject>Nanomaterials</subject><subject>Nanomedicine</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotechnology devices</subject><subject>Polymers</subject><subject>Synthetic Biology</subject><subject>Transgenes</subject><subject>Virology</subject><subject>Viruses</subject><issn>1939-5116</issn><issn>1939-0041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9v1DAQxS0EomXhwBdAkbjAIa3HjuM1B6Sqoi3Sqkj8q8TFcpJJ6pK1i51sybfH0S4rQAIhH8by_OaN_B4hT4EeAaXs-M4ZdwRsKe-RQ1Bc5ZQWcH93FwDlAXkU4w2lZVEy8ZAcMAFKKMYOifowueEaB1tnGxt877vpVYausw4xWNfNr2PEmLU-ZB06zBrs7QbD9Jg8aE0f8cmuLsinszcfTy_y1bvzt6cnq7wWUsl82ZqGcVOJujGlktC0QCUoZE0jKaWc1lCULVdV2bRGiJpVUMllLZBVgjWF5Avyeqt7O1ZrbGp0QzC9vg12bcKkvbH6946z17rzG10wJnnasCAvdgLBfxsxDnptY419bxz6MWoouaAguSz_A01mJqMVT-jzP9AbPwaXnNCg1Lwa0vkXJaksCgpUJOrllqqDjzFgu_8dUD0nrOeE9ZxwYp_9asee_BlpAo63wJ3tcfq7kr66PLncSebbCRsH_L6fMOGrLpMtIpHnegXq89XZl_f6gv8AcX2-tg</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Guenther, Caitlin M.</creator><creator>Kuypers, Brianna E.</creator><creator>Lam, Michael T.</creator><creator>Robinson, Tawana M.</creator><creator>Zhao, Julia</creator><creator>Suh, Junghae</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7U9</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>201411</creationdate><title>Synthetic virology: engineering viruses for gene delivery</title><author>Guenther, Caitlin M. ; Kuypers, Brianna E. ; Lam, Michael T. ; Robinson, Tawana M. ; Zhao, Julia ; Suh, Junghae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5797-8fad23ab5cda6971df10719e2dd700030c146f39b6dfa55c2b1b78c5e2b52d473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological evolution</topic><topic>Bionics</topic><topic>Capsids</topic><topic>Combinatorial analysis</topic><topic>Expression vectors</topic><topic>Gene therapy</topic><topic>Gene transfer</topic><topic>Genes</topic><topic>Genetic Engineering</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors</topic><topic>Humans</topic><topic>Mice</topic><topic>Nanomaterials</topic><topic>Nanomedicine</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotechnology devices</topic><topic>Polymers</topic><topic>Synthetic Biology</topic><topic>Transgenes</topic><topic>Virology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guenther, Caitlin M.</creatorcontrib><creatorcontrib>Kuypers, Brianna E.</creatorcontrib><creatorcontrib>Lam, Michael T.</creatorcontrib><creatorcontrib>Robinson, Tawana M.</creatorcontrib><creatorcontrib>Zhao, Julia</creatorcontrib><creatorcontrib>Suh, Junghae</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guenther, Caitlin M.</au><au>Kuypers, Brianna E.</au><au>Lam, Michael T.</au><au>Robinson, Tawana M.</au><au>Zhao, Julia</au><au>Suh, Junghae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic virology: engineering viruses for gene delivery</atitle><jtitle>Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology</jtitle><addtitle>WIREs Nanomed Nanobiotechnol</addtitle><date>2014-11</date><risdate>2014</risdate><volume>6</volume><issue>6</issue><spage>548</spage><epage>558</epage><pages>548-558</pages><issn>1939-5116</issn><eissn>1939-0041</eissn><abstract>The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or ‘bionic’ viruses, feature engineered components, or ‘parts’, that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man‐made polymers or inorganic nanoparticles). Various design strategies—rational, combinatorial, and pseudo‐rational—have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss‐cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavors will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine. WIREs Nanomed Nanobiotechnol 2014, 6:548–558. doi: 10.1002/wnan.1287
This article is categorized under:
Biology-Inspired Nanomaterials > Protein and Virus-Based Structures</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>25195922</pmid><doi>10.1002/wnan.1287</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-5116 |
ispartof | Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2014-11, Vol.6 (6), p.548-558 |
issn | 1939-5116 1939-0041 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4227300 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Biological evolution Bionics Capsids Combinatorial analysis Expression vectors Gene therapy Gene transfer Genes Genetic Engineering Genetic Therapy Genetic Vectors Humans Mice Nanomaterials Nanomedicine Nanoparticles Nanotechnology Nanotechnology devices Polymers Synthetic Biology Transgenes Virology Viruses |
title | Synthetic virology: engineering viruses for gene delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20virology:%20engineering%20viruses%20for%20gene%20delivery&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Nanomedicine%20and%20nanobiotechnology&rft.au=Guenther,%20Caitlin%20M.&rft.date=2014-11&rft.volume=6&rft.issue=6&rft.spage=548&rft.epage=558&rft.pages=548-558&rft.issn=1939-5116&rft.eissn=1939-0041&rft_id=info:doi/10.1002/wnan.1287&rft_dat=%3Cproquest_pubme%3E1635017376%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1707440105&rft_id=info:pmid/25195922&rfr_iscdi=true |