mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity

Epigenetic reprogramming of myeloid cells by infection or vaccination, termed trained immunity, confers non-specific protection from secondary infections. We characterized genome-wide transcriptome and histone modification profiles of human monocytes trained with β-glucan and identified induced expr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2014-09, Vol.345 (6204), p.1250684-1250684
Hauptverfasser: Cheng, Shih-Chin, Quintin, Jessica, Cramer, Robert A., Shepardson, Kelly M., Saeed, Sadia, Kumar, Vinod, Giamarellos-Bourboulis, Evangelos J, Martens, Joost H.A., Rao, Nagesha Appukudige, Aghajanirefah, Ali, Manjeri, Ganesh R., Li, Yang, Ifrim, Daniela C., Arts, Rob J.W., van der Meer, Brian M.J.W., Deen, Peter M.T., Logie, Colin, O’Neill, Luke A., Willems, Peter, van de Veerdonk, Frank L., van der Meer, Jos W.M., Ng, Aylwin, Joosten, Leo A.B., Wijmenga, Cisca, Stunnenberg, Hendrik G., Xavier, Ramnik J., Netea, Mihai G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1250684
container_issue 6204
container_start_page 1250684
container_title Science (American Association for the Advancement of Science)
container_volume 345
creator Cheng, Shih-Chin
Quintin, Jessica
Cramer, Robert A.
Shepardson, Kelly M.
Saeed, Sadia
Kumar, Vinod
Giamarellos-Bourboulis, Evangelos J
Martens, Joost H.A.
Rao, Nagesha Appukudige
Aghajanirefah, Ali
Manjeri, Ganesh R.
Li, Yang
Ifrim, Daniela C.
Arts, Rob J.W.
van der Meer, Brian M.J.W.
Deen, Peter M.T.
Logie, Colin
O’Neill, Luke A.
Willems, Peter
van de Veerdonk, Frank L.
van der Meer, Jos W.M.
Ng, Aylwin
Joosten, Leo A.B.
Wijmenga, Cisca
Stunnenberg, Hendrik G.
Xavier, Ramnik J.
Netea, Mihai G.
description Epigenetic reprogramming of myeloid cells by infection or vaccination, termed trained immunity, confers non-specific protection from secondary infections. We characterized genome-wide transcriptome and histone modification profiles of human monocytes trained with β-glucan and identified induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, lactate production, and NAD + /NADH ratio, reflecting a shift in the metabolism of trained monocytes with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1/Akt/HIF1α pathway. Inhibition of Akt, mTOR, or HIF1α blocked monocyte induction of trained immunity, whereas the AMPK activator metformin inhibited the innate immune response to fungal infection. Finally, mice with a myeloid cell-specific defect in HIF1α were unable to mount trained immunity against bacterial sepsis. In conclusion, Akt/mTOR/HIF1α-dependent induction of aerobic glycolysis represents the metabolic basis of trained immunity.
doi_str_mv 10.1126/science.1250684
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4226238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_4226238</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_42262383</originalsourceid><addsrcrecordid>eNqljMtKAzEYRoModrys3eYFpv2TNGNm40YsdVWQ7kMmTesvuZRkKsxj-SI-kxHcuO7qg3M4HyEPDOaM8W5RLLpo3ZxxCZ1aXpCGQS_bnoO4JA2A6FoFj3JGbkr5AKiuF9dkxiWXCpRoyCZsN2-L9euKfX-1we3QjG5HjctpQEsPfrLJTwULNYUGN5oh-coH84v2KdMxG4y1wBBOEcfpjlztjS_u_m9vydPqZfu8bo-nod5bF2vh9TFjMHnSyaD-byK-60P61EvOOy6UOPvgB_WWX0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Cheng, Shih-Chin ; Quintin, Jessica ; Cramer, Robert A. ; Shepardson, Kelly M. ; Saeed, Sadia ; Kumar, Vinod ; Giamarellos-Bourboulis, Evangelos J ; Martens, Joost H.A. ; Rao, Nagesha Appukudige ; Aghajanirefah, Ali ; Manjeri, Ganesh R. ; Li, Yang ; Ifrim, Daniela C. ; Arts, Rob J.W. ; van der Meer, Brian M.J.W. ; Deen, Peter M.T. ; Logie, Colin ; O’Neill, Luke A. ; Willems, Peter ; van de Veerdonk, Frank L. ; van der Meer, Jos W.M. ; Ng, Aylwin ; Joosten, Leo A.B. ; Wijmenga, Cisca ; Stunnenberg, Hendrik G. ; Xavier, Ramnik J. ; Netea, Mihai G.</creator><creatorcontrib>Cheng, Shih-Chin ; Quintin, Jessica ; Cramer, Robert A. ; Shepardson, Kelly M. ; Saeed, Sadia ; Kumar, Vinod ; Giamarellos-Bourboulis, Evangelos J ; Martens, Joost H.A. ; Rao, Nagesha Appukudige ; Aghajanirefah, Ali ; Manjeri, Ganesh R. ; Li, Yang ; Ifrim, Daniela C. ; Arts, Rob J.W. ; van der Meer, Brian M.J.W. ; Deen, Peter M.T. ; Logie, Colin ; O’Neill, Luke A. ; Willems, Peter ; van de Veerdonk, Frank L. ; van der Meer, Jos W.M. ; Ng, Aylwin ; Joosten, Leo A.B. ; Wijmenga, Cisca ; Stunnenberg, Hendrik G. ; Xavier, Ramnik J. ; Netea, Mihai G.</creatorcontrib><description>Epigenetic reprogramming of myeloid cells by infection or vaccination, termed trained immunity, confers non-specific protection from secondary infections. We characterized genome-wide transcriptome and histone modification profiles of human monocytes trained with β-glucan and identified induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, lactate production, and NAD + /NADH ratio, reflecting a shift in the metabolism of trained monocytes with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1/Akt/HIF1α pathway. Inhibition of Akt, mTOR, or HIF1α blocked monocyte induction of trained immunity, whereas the AMPK activator metformin inhibited the innate immune response to fungal infection. Finally, mice with a myeloid cell-specific defect in HIF1α were unable to mount trained immunity against bacterial sepsis. In conclusion, Akt/mTOR/HIF1α-dependent induction of aerobic glycolysis represents the metabolic basis of trained immunity.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1250684</identifier><identifier>PMID: 25258083</identifier><language>eng</language><ispartof>Science (American Association for the Advancement of Science), 2014-09, Vol.345 (6204), p.1250684-1250684</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Cheng, Shih-Chin</creatorcontrib><creatorcontrib>Quintin, Jessica</creatorcontrib><creatorcontrib>Cramer, Robert A.</creatorcontrib><creatorcontrib>Shepardson, Kelly M.</creatorcontrib><creatorcontrib>Saeed, Sadia</creatorcontrib><creatorcontrib>Kumar, Vinod</creatorcontrib><creatorcontrib>Giamarellos-Bourboulis, Evangelos J</creatorcontrib><creatorcontrib>Martens, Joost H.A.</creatorcontrib><creatorcontrib>Rao, Nagesha Appukudige</creatorcontrib><creatorcontrib>Aghajanirefah, Ali</creatorcontrib><creatorcontrib>Manjeri, Ganesh R.</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Ifrim, Daniela C.</creatorcontrib><creatorcontrib>Arts, Rob J.W.</creatorcontrib><creatorcontrib>van der Meer, Brian M.J.W.</creatorcontrib><creatorcontrib>Deen, Peter M.T.</creatorcontrib><creatorcontrib>Logie, Colin</creatorcontrib><creatorcontrib>O’Neill, Luke A.</creatorcontrib><creatorcontrib>Willems, Peter</creatorcontrib><creatorcontrib>van de Veerdonk, Frank L.</creatorcontrib><creatorcontrib>van der Meer, Jos W.M.</creatorcontrib><creatorcontrib>Ng, Aylwin</creatorcontrib><creatorcontrib>Joosten, Leo A.B.</creatorcontrib><creatorcontrib>Wijmenga, Cisca</creatorcontrib><creatorcontrib>Stunnenberg, Hendrik G.</creatorcontrib><creatorcontrib>Xavier, Ramnik J.</creatorcontrib><creatorcontrib>Netea, Mihai G.</creatorcontrib><title>mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity</title><title>Science (American Association for the Advancement of Science)</title><description>Epigenetic reprogramming of myeloid cells by infection or vaccination, termed trained immunity, confers non-specific protection from secondary infections. We characterized genome-wide transcriptome and histone modification profiles of human monocytes trained with β-glucan and identified induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, lactate production, and NAD + /NADH ratio, reflecting a shift in the metabolism of trained monocytes with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1/Akt/HIF1α pathway. Inhibition of Akt, mTOR, or HIF1α blocked monocyte induction of trained immunity, whereas the AMPK activator metformin inhibited the innate immune response to fungal infection. Finally, mice with a myeloid cell-specific defect in HIF1α were unable to mount trained immunity against bacterial sepsis. In conclusion, Akt/mTOR/HIF1α-dependent induction of aerobic glycolysis represents the metabolic basis of trained immunity.</description><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqljMtKAzEYRoModrys3eYFpv2TNGNm40YsdVWQ7kMmTesvuZRkKsxj-SI-kxHcuO7qg3M4HyEPDOaM8W5RLLpo3ZxxCZ1aXpCGQS_bnoO4JA2A6FoFj3JGbkr5AKiuF9dkxiWXCpRoyCZsN2-L9euKfX-1we3QjG5HjctpQEsPfrLJTwULNYUGN5oh-coH84v2KdMxG4y1wBBOEcfpjlztjS_u_m9vydPqZfu8bo-nod5bF2vh9TFjMHnSyaD-byK-60P61EvOOy6UOPvgB_WWX0w</recordid><startdate>20140926</startdate><enddate>20140926</enddate><creator>Cheng, Shih-Chin</creator><creator>Quintin, Jessica</creator><creator>Cramer, Robert A.</creator><creator>Shepardson, Kelly M.</creator><creator>Saeed, Sadia</creator><creator>Kumar, Vinod</creator><creator>Giamarellos-Bourboulis, Evangelos J</creator><creator>Martens, Joost H.A.</creator><creator>Rao, Nagesha Appukudige</creator><creator>Aghajanirefah, Ali</creator><creator>Manjeri, Ganesh R.</creator><creator>Li, Yang</creator><creator>Ifrim, Daniela C.</creator><creator>Arts, Rob J.W.</creator><creator>van der Meer, Brian M.J.W.</creator><creator>Deen, Peter M.T.</creator><creator>Logie, Colin</creator><creator>O’Neill, Luke A.</creator><creator>Willems, Peter</creator><creator>van de Veerdonk, Frank L.</creator><creator>van der Meer, Jos W.M.</creator><creator>Ng, Aylwin</creator><creator>Joosten, Leo A.B.</creator><creator>Wijmenga, Cisca</creator><creator>Stunnenberg, Hendrik G.</creator><creator>Xavier, Ramnik J.</creator><creator>Netea, Mihai G.</creator><scope>5PM</scope></search><sort><creationdate>20140926</creationdate><title>mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity</title><author>Cheng, Shih-Chin ; Quintin, Jessica ; Cramer, Robert A. ; Shepardson, Kelly M. ; Saeed, Sadia ; Kumar, Vinod ; Giamarellos-Bourboulis, Evangelos J ; Martens, Joost H.A. ; Rao, Nagesha Appukudige ; Aghajanirefah, Ali ; Manjeri, Ganesh R. ; Li, Yang ; Ifrim, Daniela C. ; Arts, Rob J.W. ; van der Meer, Brian M.J.W. ; Deen, Peter M.T. ; Logie, Colin ; O’Neill, Luke A. ; Willems, Peter ; van de Veerdonk, Frank L. ; van der Meer, Jos W.M. ; Ng, Aylwin ; Joosten, Leo A.B. ; Wijmenga, Cisca ; Stunnenberg, Hendrik G. ; Xavier, Ramnik J. ; Netea, Mihai G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_42262383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Shih-Chin</creatorcontrib><creatorcontrib>Quintin, Jessica</creatorcontrib><creatorcontrib>Cramer, Robert A.</creatorcontrib><creatorcontrib>Shepardson, Kelly M.</creatorcontrib><creatorcontrib>Saeed, Sadia</creatorcontrib><creatorcontrib>Kumar, Vinod</creatorcontrib><creatorcontrib>Giamarellos-Bourboulis, Evangelos J</creatorcontrib><creatorcontrib>Martens, Joost H.A.</creatorcontrib><creatorcontrib>Rao, Nagesha Appukudige</creatorcontrib><creatorcontrib>Aghajanirefah, Ali</creatorcontrib><creatorcontrib>Manjeri, Ganesh R.</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Ifrim, Daniela C.</creatorcontrib><creatorcontrib>Arts, Rob J.W.</creatorcontrib><creatorcontrib>van der Meer, Brian M.J.W.</creatorcontrib><creatorcontrib>Deen, Peter M.T.</creatorcontrib><creatorcontrib>Logie, Colin</creatorcontrib><creatorcontrib>O’Neill, Luke A.</creatorcontrib><creatorcontrib>Willems, Peter</creatorcontrib><creatorcontrib>van de Veerdonk, Frank L.</creatorcontrib><creatorcontrib>van der Meer, Jos W.M.</creatorcontrib><creatorcontrib>Ng, Aylwin</creatorcontrib><creatorcontrib>Joosten, Leo A.B.</creatorcontrib><creatorcontrib>Wijmenga, Cisca</creatorcontrib><creatorcontrib>Stunnenberg, Hendrik G.</creatorcontrib><creatorcontrib>Xavier, Ramnik J.</creatorcontrib><creatorcontrib>Netea, Mihai G.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Shih-Chin</au><au>Quintin, Jessica</au><au>Cramer, Robert A.</au><au>Shepardson, Kelly M.</au><au>Saeed, Sadia</au><au>Kumar, Vinod</au><au>Giamarellos-Bourboulis, Evangelos J</au><au>Martens, Joost H.A.</au><au>Rao, Nagesha Appukudige</au><au>Aghajanirefah, Ali</au><au>Manjeri, Ganesh R.</au><au>Li, Yang</au><au>Ifrim, Daniela C.</au><au>Arts, Rob J.W.</au><au>van der Meer, Brian M.J.W.</au><au>Deen, Peter M.T.</au><au>Logie, Colin</au><au>O’Neill, Luke A.</au><au>Willems, Peter</au><au>van de Veerdonk, Frank L.</au><au>van der Meer, Jos W.M.</au><au>Ng, Aylwin</au><au>Joosten, Leo A.B.</au><au>Wijmenga, Cisca</au><au>Stunnenberg, Hendrik G.</au><au>Xavier, Ramnik J.</au><au>Netea, Mihai G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2014-09-26</date><risdate>2014</risdate><volume>345</volume><issue>6204</issue><spage>1250684</spage><epage>1250684</epage><pages>1250684-1250684</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Epigenetic reprogramming of myeloid cells by infection or vaccination, termed trained immunity, confers non-specific protection from secondary infections. We characterized genome-wide transcriptome and histone modification profiles of human monocytes trained with β-glucan and identified induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, lactate production, and NAD + /NADH ratio, reflecting a shift in the metabolism of trained monocytes with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1/Akt/HIF1α pathway. Inhibition of Akt, mTOR, or HIF1α blocked monocyte induction of trained immunity, whereas the AMPK activator metformin inhibited the innate immune response to fungal infection. Finally, mice with a myeloid cell-specific defect in HIF1α were unable to mount trained immunity against bacterial sepsis. In conclusion, Akt/mTOR/HIF1α-dependent induction of aerobic glycolysis represents the metabolic basis of trained immunity.</abstract><pmid>25258083</pmid><doi>10.1126/science.1250684</doi></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2014-09, Vol.345 (6204), p.1250684-1250684
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4226238
source American Association for the Advancement of Science; Jstor Complete Legacy
title mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTOR/HIF1%CE%B1-mediated%20aerobic%20glycolysis%20as%20metabolic%20basis%20for%20trained%20immunity&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Cheng,%20Shih-Chin&rft.date=2014-09-26&rft.volume=345&rft.issue=6204&rft.spage=1250684&rft.epage=1250684&rft.pages=1250684-1250684&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.1250684&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_4226238%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25258083&rfr_iscdi=true