mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity
Epigenetic reprogramming of myeloid cells by infection or vaccination, termed trained immunity, confers non-specific protection from secondary infections. We characterized genome-wide transcriptome and histone modification profiles of human monocytes trained with β-glucan and identified induced expr...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2014-09, Vol.345 (6204), p.1250684-1250684 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1250684 |
---|---|
container_issue | 6204 |
container_start_page | 1250684 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 345 |
creator | Cheng, Shih-Chin Quintin, Jessica Cramer, Robert A. Shepardson, Kelly M. Saeed, Sadia Kumar, Vinod Giamarellos-Bourboulis, Evangelos J Martens, Joost H.A. Rao, Nagesha Appukudige Aghajanirefah, Ali Manjeri, Ganesh R. Li, Yang Ifrim, Daniela C. Arts, Rob J.W. van der Meer, Brian M.J.W. Deen, Peter M.T. Logie, Colin O’Neill, Luke A. Willems, Peter van de Veerdonk, Frank L. van der Meer, Jos W.M. Ng, Aylwin Joosten, Leo A.B. Wijmenga, Cisca Stunnenberg, Hendrik G. Xavier, Ramnik J. Netea, Mihai G. |
description | Epigenetic reprogramming of myeloid cells by infection or vaccination, termed
trained immunity,
confers non-specific protection from secondary infections. We characterized genome-wide transcriptome and histone modification profiles of human monocytes trained with β-glucan and identified induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, lactate production, and NAD
+
/NADH ratio, reflecting a shift in the metabolism of trained monocytes with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1/Akt/HIF1α pathway. Inhibition of Akt, mTOR, or HIF1α blocked monocyte induction of trained immunity, whereas the AMPK activator metformin inhibited the innate immune response to fungal infection. Finally, mice with a myeloid cell-specific defect in HIF1α were unable to mount trained immunity against bacterial sepsis. In conclusion, Akt/mTOR/HIF1α-dependent induction of aerobic glycolysis represents the metabolic basis of trained immunity. |
doi_str_mv | 10.1126/science.1250684 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4226238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_4226238</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_42262383</originalsourceid><addsrcrecordid>eNqljMtKAzEYRoModrys3eYFpv2TNGNm40YsdVWQ7kMmTesvuZRkKsxj-SI-kxHcuO7qg3M4HyEPDOaM8W5RLLpo3ZxxCZ1aXpCGQS_bnoO4JA2A6FoFj3JGbkr5AKiuF9dkxiWXCpRoyCZsN2-L9euKfX-1we3QjG5HjctpQEsPfrLJTwULNYUGN5oh-coH84v2KdMxG4y1wBBOEcfpjlztjS_u_m9vydPqZfu8bo-nod5bF2vh9TFjMHnSyaD-byK-60P61EvOOy6UOPvgB_WWX0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Cheng, Shih-Chin ; Quintin, Jessica ; Cramer, Robert A. ; Shepardson, Kelly M. ; Saeed, Sadia ; Kumar, Vinod ; Giamarellos-Bourboulis, Evangelos J ; Martens, Joost H.A. ; Rao, Nagesha Appukudige ; Aghajanirefah, Ali ; Manjeri, Ganesh R. ; Li, Yang ; Ifrim, Daniela C. ; Arts, Rob J.W. ; van der Meer, Brian M.J.W. ; Deen, Peter M.T. ; Logie, Colin ; O’Neill, Luke A. ; Willems, Peter ; van de Veerdonk, Frank L. ; van der Meer, Jos W.M. ; Ng, Aylwin ; Joosten, Leo A.B. ; Wijmenga, Cisca ; Stunnenberg, Hendrik G. ; Xavier, Ramnik J. ; Netea, Mihai G.</creator><creatorcontrib>Cheng, Shih-Chin ; Quintin, Jessica ; Cramer, Robert A. ; Shepardson, Kelly M. ; Saeed, Sadia ; Kumar, Vinod ; Giamarellos-Bourboulis, Evangelos J ; Martens, Joost H.A. ; Rao, Nagesha Appukudige ; Aghajanirefah, Ali ; Manjeri, Ganesh R. ; Li, Yang ; Ifrim, Daniela C. ; Arts, Rob J.W. ; van der Meer, Brian M.J.W. ; Deen, Peter M.T. ; Logie, Colin ; O’Neill, Luke A. ; Willems, Peter ; van de Veerdonk, Frank L. ; van der Meer, Jos W.M. ; Ng, Aylwin ; Joosten, Leo A.B. ; Wijmenga, Cisca ; Stunnenberg, Hendrik G. ; Xavier, Ramnik J. ; Netea, Mihai G.</creatorcontrib><description>Epigenetic reprogramming of myeloid cells by infection or vaccination, termed
trained immunity,
confers non-specific protection from secondary infections. We characterized genome-wide transcriptome and histone modification profiles of human monocytes trained with β-glucan and identified induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, lactate production, and NAD
+
/NADH ratio, reflecting a shift in the metabolism of trained monocytes with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1/Akt/HIF1α pathway. Inhibition of Akt, mTOR, or HIF1α blocked monocyte induction of trained immunity, whereas the AMPK activator metformin inhibited the innate immune response to fungal infection. Finally, mice with a myeloid cell-specific defect in HIF1α were unable to mount trained immunity against bacterial sepsis. In conclusion, Akt/mTOR/HIF1α-dependent induction of aerobic glycolysis represents the metabolic basis of trained immunity.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1250684</identifier><identifier>PMID: 25258083</identifier><language>eng</language><ispartof>Science (American Association for the Advancement of Science), 2014-09, Vol.345 (6204), p.1250684-1250684</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Cheng, Shih-Chin</creatorcontrib><creatorcontrib>Quintin, Jessica</creatorcontrib><creatorcontrib>Cramer, Robert A.</creatorcontrib><creatorcontrib>Shepardson, Kelly M.</creatorcontrib><creatorcontrib>Saeed, Sadia</creatorcontrib><creatorcontrib>Kumar, Vinod</creatorcontrib><creatorcontrib>Giamarellos-Bourboulis, Evangelos J</creatorcontrib><creatorcontrib>Martens, Joost H.A.</creatorcontrib><creatorcontrib>Rao, Nagesha Appukudige</creatorcontrib><creatorcontrib>Aghajanirefah, Ali</creatorcontrib><creatorcontrib>Manjeri, Ganesh R.</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Ifrim, Daniela C.</creatorcontrib><creatorcontrib>Arts, Rob J.W.</creatorcontrib><creatorcontrib>van der Meer, Brian M.J.W.</creatorcontrib><creatorcontrib>Deen, Peter M.T.</creatorcontrib><creatorcontrib>Logie, Colin</creatorcontrib><creatorcontrib>O’Neill, Luke A.</creatorcontrib><creatorcontrib>Willems, Peter</creatorcontrib><creatorcontrib>van de Veerdonk, Frank L.</creatorcontrib><creatorcontrib>van der Meer, Jos W.M.</creatorcontrib><creatorcontrib>Ng, Aylwin</creatorcontrib><creatorcontrib>Joosten, Leo A.B.</creatorcontrib><creatorcontrib>Wijmenga, Cisca</creatorcontrib><creatorcontrib>Stunnenberg, Hendrik G.</creatorcontrib><creatorcontrib>Xavier, Ramnik J.</creatorcontrib><creatorcontrib>Netea, Mihai G.</creatorcontrib><title>mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity</title><title>Science (American Association for the Advancement of Science)</title><description>Epigenetic reprogramming of myeloid cells by infection or vaccination, termed
trained immunity,
confers non-specific protection from secondary infections. We characterized genome-wide transcriptome and histone modification profiles of human monocytes trained with β-glucan and identified induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, lactate production, and NAD
+
/NADH ratio, reflecting a shift in the metabolism of trained monocytes with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1/Akt/HIF1α pathway. Inhibition of Akt, mTOR, or HIF1α blocked monocyte induction of trained immunity, whereas the AMPK activator metformin inhibited the innate immune response to fungal infection. Finally, mice with a myeloid cell-specific defect in HIF1α were unable to mount trained immunity against bacterial sepsis. In conclusion, Akt/mTOR/HIF1α-dependent induction of aerobic glycolysis represents the metabolic basis of trained immunity.</description><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqljMtKAzEYRoModrys3eYFpv2TNGNm40YsdVWQ7kMmTesvuZRkKsxj-SI-kxHcuO7qg3M4HyEPDOaM8W5RLLpo3ZxxCZ1aXpCGQS_bnoO4JA2A6FoFj3JGbkr5AKiuF9dkxiWXCpRoyCZsN2-L9euKfX-1we3QjG5HjctpQEsPfrLJTwULNYUGN5oh-coH84v2KdMxG4y1wBBOEcfpjlztjS_u_m9vydPqZfu8bo-nod5bF2vh9TFjMHnSyaD-byK-60P61EvOOy6UOPvgB_WWX0w</recordid><startdate>20140926</startdate><enddate>20140926</enddate><creator>Cheng, Shih-Chin</creator><creator>Quintin, Jessica</creator><creator>Cramer, Robert A.</creator><creator>Shepardson, Kelly M.</creator><creator>Saeed, Sadia</creator><creator>Kumar, Vinod</creator><creator>Giamarellos-Bourboulis, Evangelos J</creator><creator>Martens, Joost H.A.</creator><creator>Rao, Nagesha Appukudige</creator><creator>Aghajanirefah, Ali</creator><creator>Manjeri, Ganesh R.</creator><creator>Li, Yang</creator><creator>Ifrim, Daniela C.</creator><creator>Arts, Rob J.W.</creator><creator>van der Meer, Brian M.J.W.</creator><creator>Deen, Peter M.T.</creator><creator>Logie, Colin</creator><creator>O’Neill, Luke A.</creator><creator>Willems, Peter</creator><creator>van de Veerdonk, Frank L.</creator><creator>van der Meer, Jos W.M.</creator><creator>Ng, Aylwin</creator><creator>Joosten, Leo A.B.</creator><creator>Wijmenga, Cisca</creator><creator>Stunnenberg, Hendrik G.</creator><creator>Xavier, Ramnik J.</creator><creator>Netea, Mihai G.</creator><scope>5PM</scope></search><sort><creationdate>20140926</creationdate><title>mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity</title><author>Cheng, Shih-Chin ; Quintin, Jessica ; Cramer, Robert A. ; Shepardson, Kelly M. ; Saeed, Sadia ; Kumar, Vinod ; Giamarellos-Bourboulis, Evangelos J ; Martens, Joost H.A. ; Rao, Nagesha Appukudige ; Aghajanirefah, Ali ; Manjeri, Ganesh R. ; Li, Yang ; Ifrim, Daniela C. ; Arts, Rob J.W. ; van der Meer, Brian M.J.W. ; Deen, Peter M.T. ; Logie, Colin ; O’Neill, Luke A. ; Willems, Peter ; van de Veerdonk, Frank L. ; van der Meer, Jos W.M. ; Ng, Aylwin ; Joosten, Leo A.B. ; Wijmenga, Cisca ; Stunnenberg, Hendrik G. ; Xavier, Ramnik J. ; Netea, Mihai G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_42262383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Shih-Chin</creatorcontrib><creatorcontrib>Quintin, Jessica</creatorcontrib><creatorcontrib>Cramer, Robert A.</creatorcontrib><creatorcontrib>Shepardson, Kelly M.</creatorcontrib><creatorcontrib>Saeed, Sadia</creatorcontrib><creatorcontrib>Kumar, Vinod</creatorcontrib><creatorcontrib>Giamarellos-Bourboulis, Evangelos J</creatorcontrib><creatorcontrib>Martens, Joost H.A.</creatorcontrib><creatorcontrib>Rao, Nagesha Appukudige</creatorcontrib><creatorcontrib>Aghajanirefah, Ali</creatorcontrib><creatorcontrib>Manjeri, Ganesh R.</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Ifrim, Daniela C.</creatorcontrib><creatorcontrib>Arts, Rob J.W.</creatorcontrib><creatorcontrib>van der Meer, Brian M.J.W.</creatorcontrib><creatorcontrib>Deen, Peter M.T.</creatorcontrib><creatorcontrib>Logie, Colin</creatorcontrib><creatorcontrib>O’Neill, Luke A.</creatorcontrib><creatorcontrib>Willems, Peter</creatorcontrib><creatorcontrib>van de Veerdonk, Frank L.</creatorcontrib><creatorcontrib>van der Meer, Jos W.M.</creatorcontrib><creatorcontrib>Ng, Aylwin</creatorcontrib><creatorcontrib>Joosten, Leo A.B.</creatorcontrib><creatorcontrib>Wijmenga, Cisca</creatorcontrib><creatorcontrib>Stunnenberg, Hendrik G.</creatorcontrib><creatorcontrib>Xavier, Ramnik J.</creatorcontrib><creatorcontrib>Netea, Mihai G.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Shih-Chin</au><au>Quintin, Jessica</au><au>Cramer, Robert A.</au><au>Shepardson, Kelly M.</au><au>Saeed, Sadia</au><au>Kumar, Vinod</au><au>Giamarellos-Bourboulis, Evangelos J</au><au>Martens, Joost H.A.</au><au>Rao, Nagesha Appukudige</au><au>Aghajanirefah, Ali</au><au>Manjeri, Ganesh R.</au><au>Li, Yang</au><au>Ifrim, Daniela C.</au><au>Arts, Rob J.W.</au><au>van der Meer, Brian M.J.W.</au><au>Deen, Peter M.T.</au><au>Logie, Colin</au><au>O’Neill, Luke A.</au><au>Willems, Peter</au><au>van de Veerdonk, Frank L.</au><au>van der Meer, Jos W.M.</au><au>Ng, Aylwin</au><au>Joosten, Leo A.B.</au><au>Wijmenga, Cisca</au><au>Stunnenberg, Hendrik G.</au><au>Xavier, Ramnik J.</au><au>Netea, Mihai G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2014-09-26</date><risdate>2014</risdate><volume>345</volume><issue>6204</issue><spage>1250684</spage><epage>1250684</epage><pages>1250684-1250684</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Epigenetic reprogramming of myeloid cells by infection or vaccination, termed
trained immunity,
confers non-specific protection from secondary infections. We characterized genome-wide transcriptome and histone modification profiles of human monocytes trained with β-glucan and identified induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, lactate production, and NAD
+
/NADH ratio, reflecting a shift in the metabolism of trained monocytes with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1/Akt/HIF1α pathway. Inhibition of Akt, mTOR, or HIF1α blocked monocyte induction of trained immunity, whereas the AMPK activator metformin inhibited the innate immune response to fungal infection. Finally, mice with a myeloid cell-specific defect in HIF1α were unable to mount trained immunity against bacterial sepsis. In conclusion, Akt/mTOR/HIF1α-dependent induction of aerobic glycolysis represents the metabolic basis of trained immunity.</abstract><pmid>25258083</pmid><doi>10.1126/science.1250684</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2014-09, Vol.345 (6204), p.1250684-1250684 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4226238 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
title | mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTOR/HIF1%CE%B1-mediated%20aerobic%20glycolysis%20as%20metabolic%20basis%20for%20trained%20immunity&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Cheng,%20Shih-Chin&rft.date=2014-09-26&rft.volume=345&rft.issue=6204&rft.spage=1250684&rft.epage=1250684&rft.pages=1250684-1250684&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.1250684&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_4226238%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25258083&rfr_iscdi=true |