Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway
The solution self-assembly of macromolecular amphiphiles offers an efficient, bottom-up strategy for producing well-defined nanocarriers, with applications ranging from drug delivery to nanoreactors. Typically, the generation of uniform nanocarrier architectures is controlled by processing methods t...
Gespeichert in:
Veröffentlicht in: | Nat. Commun 2014-04, Vol.5 (1), p.3599-3599, Article 3599 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3599 |
---|---|
container_issue | 1 |
container_start_page | 3599 |
container_title | Nat. Commun |
container_volume | 5 |
creator | Kelley, Elizabeth G. Murphy, Ryan P. Seppala, Jonathan E. Smart, Thomas P. Hann, Sarah D. Sullivan, Millicent O. Epps, Thomas H. |
description | The solution self-assembly of macromolecular amphiphiles offers an efficient, bottom-up strategy for producing well-defined nanocarriers, with applications ranging from drug delivery to nanoreactors. Typically, the generation of uniform nanocarrier architectures is controlled by processing methods that rely on cosolvent mixtures. These preparation strategies hinge on the assumption that macromolecular solution nanostructures are kinetically stable following transfer from an organic/aqueous cosolvent into aqueous solution. Herein we demonstrate that unequivocal step-change shifts in micelle populations occur over several weeks following transfer into a highly selective solvent. The unexpected micelle growth evolves through a distinct bimodal distribution separated by multiple fusion events and critically depends on solution agitation. Notably, these results underscore fundamental similarities between assembly processes in amphiphilic polymer, small molecule and protein systems. Moreover, the non-equilibrium micelle size increase can have a major impact on the assumed stability of solution assemblies, for which performance is dictated by nanocarrier size and structure.
Micelles find applications in areas such as drug delivery systems, and as such, the kinetic stability of these structures is of high interest. Here the authors show that individual block copolymer micelles can continue to evolve after transfer to a selective solvent. |
doi_str_mv | 10.1038/ncomms4599 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4225159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3267817141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-1c74d630a72e192044a529f72cf00dd8a967341e948a3ecb52a282fbe3981e5a3</originalsourceid><addsrcrecordid>eNplkV1rFDEUhoMottTe-AMk6J1lNZ87kxuhFKtCwQv1OpzJZHZS8rEmmZX115uybV0xBHLgPLznPXkReknJO0p4_z6aFEIRUqkn6JQRQVe0Y_zpUX2Czku5Je1wRXshnqMTJjpKGnCKpm_ut8V2l_xSXYo4TXh2m9nvMYTt7Nr1zuAAJqeQvDWLh4zLAw2l2DB4ZwveOcCAR1eqi6biwYU0gsdbqPMv2L9AzybwxZ7fv2fox_XH71efVzdfP325urxZGUlYXVHTiXHNCXTMUtUMCpBMTR0zEyHj2INad1xQq0QP3JpBMmA9mwbLVU-tBH6GPhx0t8sQ7GhsrBm83mYXIO91Aqf_7UQ3603aacGYpFI1gdcHgdQW0cW4as1sUozWVE0p66VaN-jN_ZScfi62VH2blhzbYppKyhmjUtxRbw9U-7tSsp0ebVCi77LTf7Nr8Ktj44_oQ1INuDgApbXixuajmf_L_QFC7aZc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513221546</pqid></control><display><type>article</type><title>Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway</title><source>Springer Nature OA Free Journals</source><creator>Kelley, Elizabeth G. ; Murphy, Ryan P. ; Seppala, Jonathan E. ; Smart, Thomas P. ; Hann, Sarah D. ; Sullivan, Millicent O. ; Epps, Thomas H.</creator><creatorcontrib>Kelley, Elizabeth G. ; Murphy, Ryan P. ; Seppala, Jonathan E. ; Smart, Thomas P. ; Hann, Sarah D. ; Sullivan, Millicent O. ; Epps, Thomas H. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The solution self-assembly of macromolecular amphiphiles offers an efficient, bottom-up strategy for producing well-defined nanocarriers, with applications ranging from drug delivery to nanoreactors. Typically, the generation of uniform nanocarrier architectures is controlled by processing methods that rely on cosolvent mixtures. These preparation strategies hinge on the assumption that macromolecular solution nanostructures are kinetically stable following transfer from an organic/aqueous cosolvent into aqueous solution. Herein we demonstrate that unequivocal step-change shifts in micelle populations occur over several weeks following transfer into a highly selective solvent. The unexpected micelle growth evolves through a distinct bimodal distribution separated by multiple fusion events and critically depends on solution agitation. Notably, these results underscore fundamental similarities between assembly processes in amphiphilic polymer, small molecule and protein systems. Moreover, the non-equilibrium micelle size increase can have a major impact on the assumed stability of solution assemblies, for which performance is dictated by nanocarrier size and structure.
Micelles find applications in areas such as drug delivery systems, and as such, the kinetic stability of these structures is of high interest. Here the authors show that individual block copolymer micelles can continue to evolve after transfer to a selective solvent.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms4599</identifier><identifier>PMID: 24710204</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/341 ; 639/301/923/1028 ; 639/638/541 ; Aqueous solutions ; Butadienes ; Chemical Phenomena ; Equilibrium ; Humanities and Social Sciences ; Kinetics ; Macromolecular Substances ; Micelles ; multidisciplinary ; Nanostructures ; Nanotechnology ; Polyethylene ; Polymers ; Science ; Science (multidisciplinary) ; Solutions ; Solvents ; Surfactants</subject><ispartof>Nat. Commun, 2014-04, Vol.5 (1), p.3599-3599, Article 3599</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Apr 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-1c74d630a72e192044a529f72cf00dd8a967341e948a3ecb52a282fbe3981e5a3</citedby><cites>FETCH-LOGICAL-c502t-1c74d630a72e192044a529f72cf00dd8a967341e948a3ecb52a282fbe3981e5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4225159/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4225159/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms4599$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24710204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1128596$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelley, Elizabeth G.</creatorcontrib><creatorcontrib>Murphy, Ryan P.</creatorcontrib><creatorcontrib>Seppala, Jonathan E.</creatorcontrib><creatorcontrib>Smart, Thomas P.</creatorcontrib><creatorcontrib>Hann, Sarah D.</creatorcontrib><creatorcontrib>Sullivan, Millicent O.</creatorcontrib><creatorcontrib>Epps, Thomas H.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway</title><title>Nat. Commun</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The solution self-assembly of macromolecular amphiphiles offers an efficient, bottom-up strategy for producing well-defined nanocarriers, with applications ranging from drug delivery to nanoreactors. Typically, the generation of uniform nanocarrier architectures is controlled by processing methods that rely on cosolvent mixtures. These preparation strategies hinge on the assumption that macromolecular solution nanostructures are kinetically stable following transfer from an organic/aqueous cosolvent into aqueous solution. Herein we demonstrate that unequivocal step-change shifts in micelle populations occur over several weeks following transfer into a highly selective solvent. The unexpected micelle growth evolves through a distinct bimodal distribution separated by multiple fusion events and critically depends on solution agitation. Notably, these results underscore fundamental similarities between assembly processes in amphiphilic polymer, small molecule and protein systems. Moreover, the non-equilibrium micelle size increase can have a major impact on the assumed stability of solution assemblies, for which performance is dictated by nanocarrier size and structure.
Micelles find applications in areas such as drug delivery systems, and as such, the kinetic stability of these structures is of high interest. Here the authors show that individual block copolymer micelles can continue to evolve after transfer to a selective solvent.</description><subject>639/301/357/341</subject><subject>639/301/923/1028</subject><subject>639/638/541</subject><subject>Aqueous solutions</subject><subject>Butadienes</subject><subject>Chemical Phenomena</subject><subject>Equilibrium</subject><subject>Humanities and Social Sciences</subject><subject>Kinetics</subject><subject>Macromolecular Substances</subject><subject>Micelles</subject><subject>multidisciplinary</subject><subject>Nanostructures</subject><subject>Nanotechnology</subject><subject>Polyethylene</subject><subject>Polymers</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solutions</subject><subject>Solvents</subject><subject>Surfactants</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1rFDEUhoMottTe-AMk6J1lNZ87kxuhFKtCwQv1OpzJZHZS8rEmmZX115uybV0xBHLgPLznPXkReknJO0p4_z6aFEIRUqkn6JQRQVe0Y_zpUX2Czku5Je1wRXshnqMTJjpKGnCKpm_ut8V2l_xSXYo4TXh2m9nvMYTt7Nr1zuAAJqeQvDWLh4zLAw2l2DB4ZwveOcCAR1eqi6biwYU0gsdbqPMv2L9AzybwxZ7fv2fox_XH71efVzdfP325urxZGUlYXVHTiXHNCXTMUtUMCpBMTR0zEyHj2INad1xQq0QP3JpBMmA9mwbLVU-tBH6GPhx0t8sQ7GhsrBm83mYXIO91Aqf_7UQ3603aacGYpFI1gdcHgdQW0cW4as1sUozWVE0p66VaN-jN_ZScfi62VH2blhzbYppKyhmjUtxRbw9U-7tSsp0ebVCi77LTf7Nr8Ktj44_oQ1INuDgApbXixuajmf_L_QFC7aZc</recordid><startdate>20140407</startdate><enddate>20140407</enddate><creator>Kelley, Elizabeth G.</creator><creator>Murphy, Ryan P.</creator><creator>Seppala, Jonathan E.</creator><creator>Smart, Thomas P.</creator><creator>Hann, Sarah D.</creator><creator>Sullivan, Millicent O.</creator><creator>Epps, Thomas H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20140407</creationdate><title>Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway</title><author>Kelley, Elizabeth G. ; Murphy, Ryan P. ; Seppala, Jonathan E. ; Smart, Thomas P. ; Hann, Sarah D. ; Sullivan, Millicent O. ; Epps, Thomas H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-1c74d630a72e192044a529f72cf00dd8a967341e948a3ecb52a282fbe3981e5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/357/341</topic><topic>639/301/923/1028</topic><topic>639/638/541</topic><topic>Aqueous solutions</topic><topic>Butadienes</topic><topic>Chemical Phenomena</topic><topic>Equilibrium</topic><topic>Humanities and Social Sciences</topic><topic>Kinetics</topic><topic>Macromolecular Substances</topic><topic>Micelles</topic><topic>multidisciplinary</topic><topic>Nanostructures</topic><topic>Nanotechnology</topic><topic>Polyethylene</topic><topic>Polymers</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solutions</topic><topic>Solvents</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelley, Elizabeth G.</creatorcontrib><creatorcontrib>Murphy, Ryan P.</creatorcontrib><creatorcontrib>Seppala, Jonathan E.</creatorcontrib><creatorcontrib>Smart, Thomas P.</creatorcontrib><creatorcontrib>Hann, Sarah D.</creatorcontrib><creatorcontrib>Sullivan, Millicent O.</creatorcontrib><creatorcontrib>Epps, Thomas H.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nat. Commun</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kelley, Elizabeth G.</au><au>Murphy, Ryan P.</au><au>Seppala, Jonathan E.</au><au>Smart, Thomas P.</au><au>Hann, Sarah D.</au><au>Sullivan, Millicent O.</au><au>Epps, Thomas H.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway</atitle><jtitle>Nat. Commun</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-04-07</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>3599</spage><epage>3599</epage><pages>3599-3599</pages><artnum>3599</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The solution self-assembly of macromolecular amphiphiles offers an efficient, bottom-up strategy for producing well-defined nanocarriers, with applications ranging from drug delivery to nanoreactors. Typically, the generation of uniform nanocarrier architectures is controlled by processing methods that rely on cosolvent mixtures. These preparation strategies hinge on the assumption that macromolecular solution nanostructures are kinetically stable following transfer from an organic/aqueous cosolvent into aqueous solution. Herein we demonstrate that unequivocal step-change shifts in micelle populations occur over several weeks following transfer into a highly selective solvent. The unexpected micelle growth evolves through a distinct bimodal distribution separated by multiple fusion events and critically depends on solution agitation. Notably, these results underscore fundamental similarities between assembly processes in amphiphilic polymer, small molecule and protein systems. Moreover, the non-equilibrium micelle size increase can have a major impact on the assumed stability of solution assemblies, for which performance is dictated by nanocarrier size and structure.
Micelles find applications in areas such as drug delivery systems, and as such, the kinetic stability of these structures is of high interest. Here the authors show that individual block copolymer micelles can continue to evolve after transfer to a selective solvent.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24710204</pmid><doi>10.1038/ncomms4599</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nat. Commun, 2014-04, Vol.5 (1), p.3599-3599, Article 3599 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4225159 |
source | Springer Nature OA Free Journals |
subjects | 639/301/357/341 639/301/923/1028 639/638/541 Aqueous solutions Butadienes Chemical Phenomena Equilibrium Humanities and Social Sciences Kinetics Macromolecular Substances Micelles multidisciplinary Nanostructures Nanotechnology Polyethylene Polymers Science Science (multidisciplinary) Solutions Solvents Surfactants |
title | Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20evolution%20of%20highly%20amphiphilic%20macromolecular%20solution%20assemblies%20via%20a%20distinct%20bimodal%20pathway&rft.jtitle=Nat.%20Commun&rft.au=Kelley,%20Elizabeth%20G.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2014-04-07&rft.volume=5&rft.issue=1&rft.spage=3599&rft.epage=3599&rft.pages=3599-3599&rft.artnum=3599&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms4599&rft_dat=%3Cproquest_C6C%3E3267817141%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513221546&rft_id=info:pmid/24710204&rfr_iscdi=true |