Statistical Inference from Multiple iTRAQ Experiments without Using Common Reference Standards

Isobaric tags for relative and absolute quantitation (iTRAQ) is a prominent mass spectrometry technology for protein identification and quantification that is capable of analyzing multiple samples in a single experiment. Frequently, iTRAQ experiments are carried out using an aliquot from a pool of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2013-02, Vol.12 (2), p.594-604
Hauptverfasser: Herbrich, Shelley M, Cole, Robert N, West, Keith P, Schulze, Kerry, Yager, James D, Groopman, John D, Christian, Parul, Wu, Lee, O’Meally, Robert N, May, Damon H, McIntosh, Martin W, Ruczinski, Ingo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 604
container_issue 2
container_start_page 594
container_title Journal of proteome research
container_volume 12
creator Herbrich, Shelley M
Cole, Robert N
West, Keith P
Schulze, Kerry
Yager, James D
Groopman, John D
Christian, Parul
Wu, Lee
O’Meally, Robert N
May, Damon H
McIntosh, Martin W
Ruczinski, Ingo
description Isobaric tags for relative and absolute quantitation (iTRAQ) is a prominent mass spectrometry technology for protein identification and quantification that is capable of analyzing multiple samples in a single experiment. Frequently, iTRAQ experiments are carried out using an aliquot from a pool of all samples, or “masterpool”, in one of the channels as a reference sample standard to estimate protein relative abundances in the biological samples and to combine abundance estimates from multiple experiments. In this manuscript, we show that using a masterpool is counterproductive. We obtain more precise estimates of protein relative abundance by using the available biological data instead of the masterpool and do not need to occupy a channel that could otherwise be used for another biological sample. In addition, we introduce a simple statistical method to associate proteomic data from multiple iTRAQ experiments with a numeric response and show that this approach is more powerful than the conventionally employed masterpool-based approach. We illustrate our methods using data from four replicate iTRAQ experiments on aliquots of the same pool of plasma samples and from a 406-sample project designed to identify plasma proteins that covary with nutrient concentrations in chronically undernourished children from South Asia.
doi_str_mv 10.1021/pr300624g
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4223774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283725978</sourcerecordid><originalsourceid>FETCH-LOGICAL-a504t-c17cc53001094bb999213010b17ea4238c81b77e74a60d9c6eafbe05637a804e3</originalsourceid><addsrcrecordid>eNqFkV1LHDEUhkOp1I_2on-g5EbQi23zMZlMbgqyqBWUUqu3DZnsmTUyk4xJxo9_b2TdpQWhVznhPOflPedF6DMlXylh9NsYOSE1q5bv0A4VXMy4IvL9um4U30a7Kd0SQoUk_APaZpyVQood9Od3Ntml7Kzp8ZnvIIK3gLsYBnwx9dmNPWB3dXn0Cx8_jhDdAD4n_ODyTZgyvk7OL_E8DEPw-BLW40XUL0xcpI9oqzN9gk-v7x66Pjm-mv-Ynf88PZsfnc-MIFWeWSqtFWUJSlTVtkopRnn5tFSCqRhvbENbKUFWpiYLZWswXQtE1FyahlTA99D3le44tQMsbDEZTa_H4tfEJx2M0_92vLvRy3CvK8a4lFUROHgViOFugpT14JKFvjcewpQ0I-LlkFTV_0Upa7hkQsmmoIcr1MaQUoRu44gS_RKd3kRX2C9_r7Ah11kVYH8FGJv0bZiiLxd9Q-gZIBGgvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283725978</pqid></control><display><type>article</type><title>Statistical Inference from Multiple iTRAQ Experiments without Using Common Reference Standards</title><source>ACS Publications</source><source>MEDLINE</source><creator>Herbrich, Shelley M ; Cole, Robert N ; West, Keith P ; Schulze, Kerry ; Yager, James D ; Groopman, John D ; Christian, Parul ; Wu, Lee ; O’Meally, Robert N ; May, Damon H ; McIntosh, Martin W ; Ruczinski, Ingo</creator><creatorcontrib>Herbrich, Shelley M ; Cole, Robert N ; West, Keith P ; Schulze, Kerry ; Yager, James D ; Groopman, John D ; Christian, Parul ; Wu, Lee ; O’Meally, Robert N ; May, Damon H ; McIntosh, Martin W ; Ruczinski, Ingo</creatorcontrib><description>Isobaric tags for relative and absolute quantitation (iTRAQ) is a prominent mass spectrometry technology for protein identification and quantification that is capable of analyzing multiple samples in a single experiment. Frequently, iTRAQ experiments are carried out using an aliquot from a pool of all samples, or “masterpool”, in one of the channels as a reference sample standard to estimate protein relative abundances in the biological samples and to combine abundance estimates from multiple experiments. In this manuscript, we show that using a masterpool is counterproductive. We obtain more precise estimates of protein relative abundance by using the available biological data instead of the masterpool and do not need to occupy a channel that could otherwise be used for another biological sample. In addition, we introduce a simple statistical method to associate proteomic data from multiple iTRAQ experiments with a numeric response and show that this approach is more powerful than the conventionally employed masterpool-based approach. We illustrate our methods using data from four replicate iTRAQ experiments on aliquots of the same pool of plasma samples and from a 406-sample project designed to identify plasma proteins that covary with nutrient concentrations in chronically undernourished children from South Asia.</description><identifier>ISSN: 1535-3893</identifier><identifier>ISSN: 1535-3907</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/pr300624g</identifier><identifier>PMID: 23270375</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>blood proteins ; Blood Proteins - chemistry ; Calibration ; Child ; Child Nutrition Disorders - blood ; children ; Chromatography, Liquid ; Humans ; malnutrition ; mass spectrometry ; Nepal ; nutrient content ; Peptide Fragments - analysis ; proteome ; Proteomics ; Reference Standards ; South Asia ; statistical inference ; Tandem Mass Spectrometry - methods ; Tandem Mass Spectrometry - standards ; Tandem Mass Spectrometry - statistics &amp; numerical data ; Trypsin - chemistry</subject><ispartof>Journal of proteome research, 2013-02, Vol.12 (2), p.594-604</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2012 American Chemical Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a504t-c17cc53001094bb999213010b17ea4238c81b77e74a60d9c6eafbe05637a804e3</citedby><cites>FETCH-LOGICAL-a504t-c17cc53001094bb999213010b17ea4238c81b77e74a60d9c6eafbe05637a804e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/pr300624g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/pr300624g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23270375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herbrich, Shelley M</creatorcontrib><creatorcontrib>Cole, Robert N</creatorcontrib><creatorcontrib>West, Keith P</creatorcontrib><creatorcontrib>Schulze, Kerry</creatorcontrib><creatorcontrib>Yager, James D</creatorcontrib><creatorcontrib>Groopman, John D</creatorcontrib><creatorcontrib>Christian, Parul</creatorcontrib><creatorcontrib>Wu, Lee</creatorcontrib><creatorcontrib>O’Meally, Robert N</creatorcontrib><creatorcontrib>May, Damon H</creatorcontrib><creatorcontrib>McIntosh, Martin W</creatorcontrib><creatorcontrib>Ruczinski, Ingo</creatorcontrib><title>Statistical Inference from Multiple iTRAQ Experiments without Using Common Reference Standards</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Isobaric tags for relative and absolute quantitation (iTRAQ) is a prominent mass spectrometry technology for protein identification and quantification that is capable of analyzing multiple samples in a single experiment. Frequently, iTRAQ experiments are carried out using an aliquot from a pool of all samples, or “masterpool”, in one of the channels as a reference sample standard to estimate protein relative abundances in the biological samples and to combine abundance estimates from multiple experiments. In this manuscript, we show that using a masterpool is counterproductive. We obtain more precise estimates of protein relative abundance by using the available biological data instead of the masterpool and do not need to occupy a channel that could otherwise be used for another biological sample. In addition, we introduce a simple statistical method to associate proteomic data from multiple iTRAQ experiments with a numeric response and show that this approach is more powerful than the conventionally employed masterpool-based approach. We illustrate our methods using data from four replicate iTRAQ experiments on aliquots of the same pool of plasma samples and from a 406-sample project designed to identify plasma proteins that covary with nutrient concentrations in chronically undernourished children from South Asia.</description><subject>blood proteins</subject><subject>Blood Proteins - chemistry</subject><subject>Calibration</subject><subject>Child</subject><subject>Child Nutrition Disorders - blood</subject><subject>children</subject><subject>Chromatography, Liquid</subject><subject>Humans</subject><subject>malnutrition</subject><subject>mass spectrometry</subject><subject>Nepal</subject><subject>nutrient content</subject><subject>Peptide Fragments - analysis</subject><subject>proteome</subject><subject>Proteomics</subject><subject>Reference Standards</subject><subject>South Asia</subject><subject>statistical inference</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Tandem Mass Spectrometry - standards</subject><subject>Tandem Mass Spectrometry - statistics &amp; numerical data</subject><subject>Trypsin - chemistry</subject><issn>1535-3893</issn><issn>1535-3907</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1LHDEUhkOp1I_2on-g5EbQi23zMZlMbgqyqBWUUqu3DZnsmTUyk4xJxo9_b2TdpQWhVznhPOflPedF6DMlXylh9NsYOSE1q5bv0A4VXMy4IvL9um4U30a7Kd0SQoUk_APaZpyVQood9Od3Ntml7Kzp8ZnvIIK3gLsYBnwx9dmNPWB3dXn0Cx8_jhDdAD4n_ODyTZgyvk7OL_E8DEPw-BLW40XUL0xcpI9oqzN9gk-v7x66Pjm-mv-Ynf88PZsfnc-MIFWeWSqtFWUJSlTVtkopRnn5tFSCqRhvbENbKUFWpiYLZWswXQtE1FyahlTA99D3le44tQMsbDEZTa_H4tfEJx2M0_92vLvRy3CvK8a4lFUROHgViOFugpT14JKFvjcewpQ0I-LlkFTV_0Upa7hkQsmmoIcr1MaQUoRu44gS_RKd3kRX2C9_r7Ah11kVYH8FGJv0bZiiLxd9Q-gZIBGgvA</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Herbrich, Shelley M</creator><creator>Cole, Robert N</creator><creator>West, Keith P</creator><creator>Schulze, Kerry</creator><creator>Yager, James D</creator><creator>Groopman, John D</creator><creator>Christian, Parul</creator><creator>Wu, Lee</creator><creator>O’Meally, Robert N</creator><creator>May, Damon H</creator><creator>McIntosh, Martin W</creator><creator>Ruczinski, Ingo</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130201</creationdate><title>Statistical Inference from Multiple iTRAQ Experiments without Using Common Reference Standards</title><author>Herbrich, Shelley M ; Cole, Robert N ; West, Keith P ; Schulze, Kerry ; Yager, James D ; Groopman, John D ; Christian, Parul ; Wu, Lee ; O’Meally, Robert N ; May, Damon H ; McIntosh, Martin W ; Ruczinski, Ingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a504t-c17cc53001094bb999213010b17ea4238c81b77e74a60d9c6eafbe05637a804e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>blood proteins</topic><topic>Blood Proteins - chemistry</topic><topic>Calibration</topic><topic>Child</topic><topic>Child Nutrition Disorders - blood</topic><topic>children</topic><topic>Chromatography, Liquid</topic><topic>Humans</topic><topic>malnutrition</topic><topic>mass spectrometry</topic><topic>Nepal</topic><topic>nutrient content</topic><topic>Peptide Fragments - analysis</topic><topic>proteome</topic><topic>Proteomics</topic><topic>Reference Standards</topic><topic>South Asia</topic><topic>statistical inference</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Tandem Mass Spectrometry - standards</topic><topic>Tandem Mass Spectrometry - statistics &amp; numerical data</topic><topic>Trypsin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herbrich, Shelley M</creatorcontrib><creatorcontrib>Cole, Robert N</creatorcontrib><creatorcontrib>West, Keith P</creatorcontrib><creatorcontrib>Schulze, Kerry</creatorcontrib><creatorcontrib>Yager, James D</creatorcontrib><creatorcontrib>Groopman, John D</creatorcontrib><creatorcontrib>Christian, Parul</creatorcontrib><creatorcontrib>Wu, Lee</creatorcontrib><creatorcontrib>O’Meally, Robert N</creatorcontrib><creatorcontrib>May, Damon H</creatorcontrib><creatorcontrib>McIntosh, Martin W</creatorcontrib><creatorcontrib>Ruczinski, Ingo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herbrich, Shelley M</au><au>Cole, Robert N</au><au>West, Keith P</au><au>Schulze, Kerry</au><au>Yager, James D</au><au>Groopman, John D</au><au>Christian, Parul</au><au>Wu, Lee</au><au>O’Meally, Robert N</au><au>May, Damon H</au><au>McIntosh, Martin W</au><au>Ruczinski, Ingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Inference from Multiple iTRAQ Experiments without Using Common Reference Standards</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>12</volume><issue>2</issue><spage>594</spage><epage>604</epage><pages>594-604</pages><issn>1535-3893</issn><issn>1535-3907</issn><eissn>1535-3907</eissn><abstract>Isobaric tags for relative and absolute quantitation (iTRAQ) is a prominent mass spectrometry technology for protein identification and quantification that is capable of analyzing multiple samples in a single experiment. Frequently, iTRAQ experiments are carried out using an aliquot from a pool of all samples, or “masterpool”, in one of the channels as a reference sample standard to estimate protein relative abundances in the biological samples and to combine abundance estimates from multiple experiments. In this manuscript, we show that using a masterpool is counterproductive. We obtain more precise estimates of protein relative abundance by using the available biological data instead of the masterpool and do not need to occupy a channel that could otherwise be used for another biological sample. In addition, we introduce a simple statistical method to associate proteomic data from multiple iTRAQ experiments with a numeric response and show that this approach is more powerful than the conventionally employed masterpool-based approach. We illustrate our methods using data from four replicate iTRAQ experiments on aliquots of the same pool of plasma samples and from a 406-sample project designed to identify plasma proteins that covary with nutrient concentrations in chronically undernourished children from South Asia.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23270375</pmid><doi>10.1021/pr300624g</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2013-02, Vol.12 (2), p.594-604
issn 1535-3893
1535-3907
1535-3907
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4223774
source ACS Publications; MEDLINE
subjects blood proteins
Blood Proteins - chemistry
Calibration
Child
Child Nutrition Disorders - blood
children
Chromatography, Liquid
Humans
malnutrition
mass spectrometry
Nepal
nutrient content
Peptide Fragments - analysis
proteome
Proteomics
Reference Standards
South Asia
statistical inference
Tandem Mass Spectrometry - methods
Tandem Mass Spectrometry - standards
Tandem Mass Spectrometry - statistics & numerical data
Trypsin - chemistry
title Statistical Inference from Multiple iTRAQ Experiments without Using Common Reference Standards
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Inference%20from%20Multiple%20iTRAQ%20Experiments%20without%20Using%20Common%20Reference%20Standards&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Herbrich,%20Shelley%20M&rft.date=2013-02-01&rft.volume=12&rft.issue=2&rft.spage=594&rft.epage=604&rft.pages=594-604&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/pr300624g&rft_dat=%3Cproquest_pubme%3E1283725978%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283725978&rft_id=info:pmid/23270375&rfr_iscdi=true