Statistical Inference from Multiple iTRAQ Experiments without Using Common Reference Standards
Isobaric tags for relative and absolute quantitation (iTRAQ) is a prominent mass spectrometry technology for protein identification and quantification that is capable of analyzing multiple samples in a single experiment. Frequently, iTRAQ experiments are carried out using an aliquot from a pool of a...
Gespeichert in:
Veröffentlicht in: | Journal of proteome research 2013-02, Vol.12 (2), p.594-604 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 604 |
---|---|
container_issue | 2 |
container_start_page | 594 |
container_title | Journal of proteome research |
container_volume | 12 |
creator | Herbrich, Shelley M Cole, Robert N West, Keith P Schulze, Kerry Yager, James D Groopman, John D Christian, Parul Wu, Lee O’Meally, Robert N May, Damon H McIntosh, Martin W Ruczinski, Ingo |
description | Isobaric tags for relative and absolute quantitation (iTRAQ) is a prominent mass spectrometry technology for protein identification and quantification that is capable of analyzing multiple samples in a single experiment. Frequently, iTRAQ experiments are carried out using an aliquot from a pool of all samples, or “masterpool”, in one of the channels as a reference sample standard to estimate protein relative abundances in the biological samples and to combine abundance estimates from multiple experiments. In this manuscript, we show that using a masterpool is counterproductive. We obtain more precise estimates of protein relative abundance by using the available biological data instead of the masterpool and do not need to occupy a channel that could otherwise be used for another biological sample. In addition, we introduce a simple statistical method to associate proteomic data from multiple iTRAQ experiments with a numeric response and show that this approach is more powerful than the conventionally employed masterpool-based approach. We illustrate our methods using data from four replicate iTRAQ experiments on aliquots of the same pool of plasma samples and from a 406-sample project designed to identify plasma proteins that covary with nutrient concentrations in chronically undernourished children from South Asia. |
doi_str_mv | 10.1021/pr300624g |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4223774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283725978</sourcerecordid><originalsourceid>FETCH-LOGICAL-a504t-c17cc53001094bb999213010b17ea4238c81b77e74a60d9c6eafbe05637a804e3</originalsourceid><addsrcrecordid>eNqFkV1LHDEUhkOp1I_2on-g5EbQi23zMZlMbgqyqBWUUqu3DZnsmTUyk4xJxo9_b2TdpQWhVznhPOflPedF6DMlXylh9NsYOSE1q5bv0A4VXMy4IvL9um4U30a7Kd0SQoUk_APaZpyVQood9Od3Ntml7Kzp8ZnvIIK3gLsYBnwx9dmNPWB3dXn0Cx8_jhDdAD4n_ODyTZgyvk7OL_E8DEPw-BLW40XUL0xcpI9oqzN9gk-v7x66Pjm-mv-Ynf88PZsfnc-MIFWeWSqtFWUJSlTVtkopRnn5tFSCqRhvbENbKUFWpiYLZWswXQtE1FyahlTA99D3le44tQMsbDEZTa_H4tfEJx2M0_92vLvRy3CvK8a4lFUROHgViOFugpT14JKFvjcewpQ0I-LlkFTV_0Upa7hkQsmmoIcr1MaQUoRu44gS_RKd3kRX2C9_r7Ah11kVYH8FGJv0bZiiLxd9Q-gZIBGgvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283725978</pqid></control><display><type>article</type><title>Statistical Inference from Multiple iTRAQ Experiments without Using Common Reference Standards</title><source>ACS Publications</source><source>MEDLINE</source><creator>Herbrich, Shelley M ; Cole, Robert N ; West, Keith P ; Schulze, Kerry ; Yager, James D ; Groopman, John D ; Christian, Parul ; Wu, Lee ; O’Meally, Robert N ; May, Damon H ; McIntosh, Martin W ; Ruczinski, Ingo</creator><creatorcontrib>Herbrich, Shelley M ; Cole, Robert N ; West, Keith P ; Schulze, Kerry ; Yager, James D ; Groopman, John D ; Christian, Parul ; Wu, Lee ; O’Meally, Robert N ; May, Damon H ; McIntosh, Martin W ; Ruczinski, Ingo</creatorcontrib><description>Isobaric tags for relative and absolute quantitation (iTRAQ) is a prominent mass spectrometry technology for protein identification and quantification that is capable of analyzing multiple samples in a single experiment. Frequently, iTRAQ experiments are carried out using an aliquot from a pool of all samples, or “masterpool”, in one of the channels as a reference sample standard to estimate protein relative abundances in the biological samples and to combine abundance estimates from multiple experiments. In this manuscript, we show that using a masterpool is counterproductive. We obtain more precise estimates of protein relative abundance by using the available biological data instead of the masterpool and do not need to occupy a channel that could otherwise be used for another biological sample. In addition, we introduce a simple statistical method to associate proteomic data from multiple iTRAQ experiments with a numeric response and show that this approach is more powerful than the conventionally employed masterpool-based approach. We illustrate our methods using data from four replicate iTRAQ experiments on aliquots of the same pool of plasma samples and from a 406-sample project designed to identify plasma proteins that covary with nutrient concentrations in chronically undernourished children from South Asia.</description><identifier>ISSN: 1535-3893</identifier><identifier>ISSN: 1535-3907</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/pr300624g</identifier><identifier>PMID: 23270375</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>blood proteins ; Blood Proteins - chemistry ; Calibration ; Child ; Child Nutrition Disorders - blood ; children ; Chromatography, Liquid ; Humans ; malnutrition ; mass spectrometry ; Nepal ; nutrient content ; Peptide Fragments - analysis ; proteome ; Proteomics ; Reference Standards ; South Asia ; statistical inference ; Tandem Mass Spectrometry - methods ; Tandem Mass Spectrometry - standards ; Tandem Mass Spectrometry - statistics & numerical data ; Trypsin - chemistry</subject><ispartof>Journal of proteome research, 2013-02, Vol.12 (2), p.594-604</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2012 American Chemical Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a504t-c17cc53001094bb999213010b17ea4238c81b77e74a60d9c6eafbe05637a804e3</citedby><cites>FETCH-LOGICAL-a504t-c17cc53001094bb999213010b17ea4238c81b77e74a60d9c6eafbe05637a804e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/pr300624g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/pr300624g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23270375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herbrich, Shelley M</creatorcontrib><creatorcontrib>Cole, Robert N</creatorcontrib><creatorcontrib>West, Keith P</creatorcontrib><creatorcontrib>Schulze, Kerry</creatorcontrib><creatorcontrib>Yager, James D</creatorcontrib><creatorcontrib>Groopman, John D</creatorcontrib><creatorcontrib>Christian, Parul</creatorcontrib><creatorcontrib>Wu, Lee</creatorcontrib><creatorcontrib>O’Meally, Robert N</creatorcontrib><creatorcontrib>May, Damon H</creatorcontrib><creatorcontrib>McIntosh, Martin W</creatorcontrib><creatorcontrib>Ruczinski, Ingo</creatorcontrib><title>Statistical Inference from Multiple iTRAQ Experiments without Using Common Reference Standards</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Isobaric tags for relative and absolute quantitation (iTRAQ) is a prominent mass spectrometry technology for protein identification and quantification that is capable of analyzing multiple samples in a single experiment. Frequently, iTRAQ experiments are carried out using an aliquot from a pool of all samples, or “masterpool”, in one of the channels as a reference sample standard to estimate protein relative abundances in the biological samples and to combine abundance estimates from multiple experiments. In this manuscript, we show that using a masterpool is counterproductive. We obtain more precise estimates of protein relative abundance by using the available biological data instead of the masterpool and do not need to occupy a channel that could otherwise be used for another biological sample. In addition, we introduce a simple statistical method to associate proteomic data from multiple iTRAQ experiments with a numeric response and show that this approach is more powerful than the conventionally employed masterpool-based approach. We illustrate our methods using data from four replicate iTRAQ experiments on aliquots of the same pool of plasma samples and from a 406-sample project designed to identify plasma proteins that covary with nutrient concentrations in chronically undernourished children from South Asia.</description><subject>blood proteins</subject><subject>Blood Proteins - chemistry</subject><subject>Calibration</subject><subject>Child</subject><subject>Child Nutrition Disorders - blood</subject><subject>children</subject><subject>Chromatography, Liquid</subject><subject>Humans</subject><subject>malnutrition</subject><subject>mass spectrometry</subject><subject>Nepal</subject><subject>nutrient content</subject><subject>Peptide Fragments - analysis</subject><subject>proteome</subject><subject>Proteomics</subject><subject>Reference Standards</subject><subject>South Asia</subject><subject>statistical inference</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Tandem Mass Spectrometry - standards</subject><subject>Tandem Mass Spectrometry - statistics & numerical data</subject><subject>Trypsin - chemistry</subject><issn>1535-3893</issn><issn>1535-3907</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1LHDEUhkOp1I_2on-g5EbQi23zMZlMbgqyqBWUUqu3DZnsmTUyk4xJxo9_b2TdpQWhVznhPOflPedF6DMlXylh9NsYOSE1q5bv0A4VXMy4IvL9um4U30a7Kd0SQoUk_APaZpyVQood9Od3Ntml7Kzp8ZnvIIK3gLsYBnwx9dmNPWB3dXn0Cx8_jhDdAD4n_ODyTZgyvk7OL_E8DEPw-BLW40XUL0xcpI9oqzN9gk-v7x66Pjm-mv-Ynf88PZsfnc-MIFWeWSqtFWUJSlTVtkopRnn5tFSCqRhvbENbKUFWpiYLZWswXQtE1FyahlTA99D3le44tQMsbDEZTa_H4tfEJx2M0_92vLvRy3CvK8a4lFUROHgViOFugpT14JKFvjcewpQ0I-LlkFTV_0Upa7hkQsmmoIcr1MaQUoRu44gS_RKd3kRX2C9_r7Ah11kVYH8FGJv0bZiiLxd9Q-gZIBGgvA</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Herbrich, Shelley M</creator><creator>Cole, Robert N</creator><creator>West, Keith P</creator><creator>Schulze, Kerry</creator><creator>Yager, James D</creator><creator>Groopman, John D</creator><creator>Christian, Parul</creator><creator>Wu, Lee</creator><creator>O’Meally, Robert N</creator><creator>May, Damon H</creator><creator>McIntosh, Martin W</creator><creator>Ruczinski, Ingo</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130201</creationdate><title>Statistical Inference from Multiple iTRAQ Experiments without Using Common Reference Standards</title><author>Herbrich, Shelley M ; Cole, Robert N ; West, Keith P ; Schulze, Kerry ; Yager, James D ; Groopman, John D ; Christian, Parul ; Wu, Lee ; O’Meally, Robert N ; May, Damon H ; McIntosh, Martin W ; Ruczinski, Ingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a504t-c17cc53001094bb999213010b17ea4238c81b77e74a60d9c6eafbe05637a804e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>blood proteins</topic><topic>Blood Proteins - chemistry</topic><topic>Calibration</topic><topic>Child</topic><topic>Child Nutrition Disorders - blood</topic><topic>children</topic><topic>Chromatography, Liquid</topic><topic>Humans</topic><topic>malnutrition</topic><topic>mass spectrometry</topic><topic>Nepal</topic><topic>nutrient content</topic><topic>Peptide Fragments - analysis</topic><topic>proteome</topic><topic>Proteomics</topic><topic>Reference Standards</topic><topic>South Asia</topic><topic>statistical inference</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Tandem Mass Spectrometry - standards</topic><topic>Tandem Mass Spectrometry - statistics & numerical data</topic><topic>Trypsin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herbrich, Shelley M</creatorcontrib><creatorcontrib>Cole, Robert N</creatorcontrib><creatorcontrib>West, Keith P</creatorcontrib><creatorcontrib>Schulze, Kerry</creatorcontrib><creatorcontrib>Yager, James D</creatorcontrib><creatorcontrib>Groopman, John D</creatorcontrib><creatorcontrib>Christian, Parul</creatorcontrib><creatorcontrib>Wu, Lee</creatorcontrib><creatorcontrib>O’Meally, Robert N</creatorcontrib><creatorcontrib>May, Damon H</creatorcontrib><creatorcontrib>McIntosh, Martin W</creatorcontrib><creatorcontrib>Ruczinski, Ingo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herbrich, Shelley M</au><au>Cole, Robert N</au><au>West, Keith P</au><au>Schulze, Kerry</au><au>Yager, James D</au><au>Groopman, John D</au><au>Christian, Parul</au><au>Wu, Lee</au><au>O’Meally, Robert N</au><au>May, Damon H</au><au>McIntosh, Martin W</au><au>Ruczinski, Ingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Inference from Multiple iTRAQ Experiments without Using Common Reference Standards</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>12</volume><issue>2</issue><spage>594</spage><epage>604</epage><pages>594-604</pages><issn>1535-3893</issn><issn>1535-3907</issn><eissn>1535-3907</eissn><abstract>Isobaric tags for relative and absolute quantitation (iTRAQ) is a prominent mass spectrometry technology for protein identification and quantification that is capable of analyzing multiple samples in a single experiment. Frequently, iTRAQ experiments are carried out using an aliquot from a pool of all samples, or “masterpool”, in one of the channels as a reference sample standard to estimate protein relative abundances in the biological samples and to combine abundance estimates from multiple experiments. In this manuscript, we show that using a masterpool is counterproductive. We obtain more precise estimates of protein relative abundance by using the available biological data instead of the masterpool and do not need to occupy a channel that could otherwise be used for another biological sample. In addition, we introduce a simple statistical method to associate proteomic data from multiple iTRAQ experiments with a numeric response and show that this approach is more powerful than the conventionally employed masterpool-based approach. We illustrate our methods using data from four replicate iTRAQ experiments on aliquots of the same pool of plasma samples and from a 406-sample project designed to identify plasma proteins that covary with nutrient concentrations in chronically undernourished children from South Asia.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23270375</pmid><doi>10.1021/pr300624g</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3893 |
ispartof | Journal of proteome research, 2013-02, Vol.12 (2), p.594-604 |
issn | 1535-3893 1535-3907 1535-3907 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4223774 |
source | ACS Publications; MEDLINE |
subjects | blood proteins Blood Proteins - chemistry Calibration Child Child Nutrition Disorders - blood children Chromatography, Liquid Humans malnutrition mass spectrometry Nepal nutrient content Peptide Fragments - analysis proteome Proteomics Reference Standards South Asia statistical inference Tandem Mass Spectrometry - methods Tandem Mass Spectrometry - standards Tandem Mass Spectrometry - statistics & numerical data Trypsin - chemistry |
title | Statistical Inference from Multiple iTRAQ Experiments without Using Common Reference Standards |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Inference%20from%20Multiple%20iTRAQ%20Experiments%20without%20Using%20Common%20Reference%20Standards&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Herbrich,%20Shelley%20M&rft.date=2013-02-01&rft.volume=12&rft.issue=2&rft.spage=594&rft.epage=604&rft.pages=594-604&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/pr300624g&rft_dat=%3Cproquest_pubme%3E1283725978%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283725978&rft_id=info:pmid/23270375&rfr_iscdi=true |