Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway

Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxida...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2014-11, Vol.289 (45), p.30901-30910
Hauptverfasser: Libiad, Marouane, Yadav, Pramod Kumar, Vitvitsky, Victor, Martinov, Michael, Banerjee, Ruma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30910
container_issue 45
container_start_page 30901
container_title The Journal of biological chemistry
container_volume 289
creator Libiad, Marouane
Yadav, Pramod Kumar
Vitvitsky, Victor
Martinov, Michael
Banerjee, Ruma
description Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed.
doi_str_mv 10.1074/jbc.M114.602664
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4223297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192582033324X</els_id><sourcerecordid>S002192582033324X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-6d515010b35978d795ad6fcbb288ca73824060d90a2d86832e41c3c9783a2e823</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMobk6ffZN-gW7507TJiyBDnbIxQQXfQpqka0bXjLSbzk9vRnXog5cL9-Gecy73B8AlgkMEs2S0zNVwhlAyTCFO0-QI9BFkJCYUvR2DPoQYxRxT1gNnTbOEoRKOTkEPUxyaoz54nPuFrO2nbK2rI1dEbWmiyWYl62hmW6dKV2tvZRVNdtq7hamj501VWG2i-YfVnetJtuW73J2Dk0JWjbn4ngPwenf7Mp7E0_n9w_hmGisKeRunmiIKEcwJ5RnTGadSp4XKc8yYkhlhOIEp1BxKrFnKCDYJUkQFLZHYMEwG4LrLXW_yldHK1K2XlVh7u5J-J5y04u-mtqVYuK1IMCaYZyFg1AUo75rGm-LgRVDssYqAVeyxig5rcFz9PnnQ_3AMAt4JTHh8a40XjbKmVkZbb1QrtLP_hn8BqPOHzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Libiad, Marouane ; Yadav, Pramod Kumar ; Vitvitsky, Victor ; Martinov, Michael ; Banerjee, Ruma</creator><creatorcontrib>Libiad, Marouane ; Yadav, Pramod Kumar ; Vitvitsky, Victor ; Martinov, Michael ; Banerjee, Ruma</creatorcontrib><description>Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.602664</identifier><identifier>PMID: 25225291</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Catalysis ; Cysteine - chemistry ; Cytochromes c - chemistry ; Enzymology ; Escherichia coli - enzymology ; Glutathione - chemistry ; Homeostasis ; Humans ; Hydrogen Sulfide - chemistry ; Hydrogen-Ion Concentration ; Kinetics ; Mitochondria - metabolism ; Oxidation-Reduction ; Oxygen - chemistry ; Quinone Reductases - chemistry ; Spectrophotometry, Ultraviolet ; Sulfides - chemistry ; Thiosulfate Sulfurtransferase - chemistry</subject><ispartof>The Journal of biological chemistry, 2014-11, Vol.289 (45), p.30901-30910</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-6d515010b35978d795ad6fcbb288ca73824060d90a2d86832e41c3c9783a2e823</citedby><cites>FETCH-LOGICAL-c509t-6d515010b35978d795ad6fcbb288ca73824060d90a2d86832e41c3c9783a2e823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4223297/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4223297/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25225291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Libiad, Marouane</creatorcontrib><creatorcontrib>Yadav, Pramod Kumar</creatorcontrib><creatorcontrib>Vitvitsky, Victor</creatorcontrib><creatorcontrib>Martinov, Michael</creatorcontrib><creatorcontrib>Banerjee, Ruma</creatorcontrib><title>Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed.</description><subject>Catalysis</subject><subject>Cysteine - chemistry</subject><subject>Cytochromes c - chemistry</subject><subject>Enzymology</subject><subject>Escherichia coli - enzymology</subject><subject>Glutathione - chemistry</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hydrogen Sulfide - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Mitochondria - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Oxygen - chemistry</subject><subject>Quinone Reductases - chemistry</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Sulfides - chemistry</subject><subject>Thiosulfate Sulfurtransferase - chemistry</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kF9LwzAUxYMobk6ffZN-gW7507TJiyBDnbIxQQXfQpqka0bXjLSbzk9vRnXog5cL9-Gecy73B8AlgkMEs2S0zNVwhlAyTCFO0-QI9BFkJCYUvR2DPoQYxRxT1gNnTbOEoRKOTkEPUxyaoz54nPuFrO2nbK2rI1dEbWmiyWYl62hmW6dKV2tvZRVNdtq7hamj501VWG2i-YfVnetJtuW73J2Dk0JWjbn4ngPwenf7Mp7E0_n9w_hmGisKeRunmiIKEcwJ5RnTGadSp4XKc8yYkhlhOIEp1BxKrFnKCDYJUkQFLZHYMEwG4LrLXW_yldHK1K2XlVh7u5J-J5y04u-mtqVYuK1IMCaYZyFg1AUo75rGm-LgRVDssYqAVeyxig5rcFz9PnnQ_3AMAt4JTHh8a40XjbKmVkZbb1QrtLP_hn8BqPOHzQ</recordid><startdate>20141107</startdate><enddate>20141107</enddate><creator>Libiad, Marouane</creator><creator>Yadav, Pramod Kumar</creator><creator>Vitvitsky, Victor</creator><creator>Martinov, Michael</creator><creator>Banerjee, Ruma</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20141107</creationdate><title>Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway</title><author>Libiad, Marouane ; Yadav, Pramod Kumar ; Vitvitsky, Victor ; Martinov, Michael ; Banerjee, Ruma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-6d515010b35978d795ad6fcbb288ca73824060d90a2d86832e41c3c9783a2e823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Catalysis</topic><topic>Cysteine - chemistry</topic><topic>Cytochromes c - chemistry</topic><topic>Enzymology</topic><topic>Escherichia coli - enzymology</topic><topic>Glutathione - chemistry</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hydrogen Sulfide - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Mitochondria - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Oxygen - chemistry</topic><topic>Quinone Reductases - chemistry</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Sulfides - chemistry</topic><topic>Thiosulfate Sulfurtransferase - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Libiad, Marouane</creatorcontrib><creatorcontrib>Yadav, Pramod Kumar</creatorcontrib><creatorcontrib>Vitvitsky, Victor</creatorcontrib><creatorcontrib>Martinov, Michael</creatorcontrib><creatorcontrib>Banerjee, Ruma</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Libiad, Marouane</au><au>Yadav, Pramod Kumar</au><au>Vitvitsky, Victor</au><au>Martinov, Michael</au><au>Banerjee, Ruma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-11-07</date><risdate>2014</risdate><volume>289</volume><issue>45</issue><spage>30901</spage><epage>30910</epage><pages>30901-30910</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25225291</pmid><doi>10.1074/jbc.M114.602664</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2014-11, Vol.289 (45), p.30901-30910
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4223297
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Catalysis
Cysteine - chemistry
Cytochromes c - chemistry
Enzymology
Escherichia coli - enzymology
Glutathione - chemistry
Homeostasis
Humans
Hydrogen Sulfide - chemistry
Hydrogen-Ion Concentration
Kinetics
Mitochondria - metabolism
Oxidation-Reduction
Oxygen - chemistry
Quinone Reductases - chemistry
Spectrophotometry, Ultraviolet
Sulfides - chemistry
Thiosulfate Sulfurtransferase - chemistry
title Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organization%20of%20the%20Human%20Mitochondrial%20Hydrogen%20Sulfide%20Oxidation%20Pathway&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Libiad,%20Marouane&rft.date=2014-11-07&rft.volume=289&rft.issue=45&rft.spage=30901&rft.epage=30910&rft.pages=30901-30910&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.602664&rft_dat=%3Celsevier_pubme%3ES002192582033324X%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25225291&rft_els_id=S002192582033324X&rfr_iscdi=true