Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway
Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxida...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2014-11, Vol.289 (45), p.30901-30910 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30910 |
---|---|
container_issue | 45 |
container_start_page | 30901 |
container_title | The Journal of biological chemistry |
container_volume | 289 |
creator | Libiad, Marouane Yadav, Pramod Kumar Vitvitsky, Victor Martinov, Michael Banerjee, Ruma |
description | Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed. |
doi_str_mv | 10.1074/jbc.M114.602664 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4223297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192582033324X</els_id><sourcerecordid>S002192582033324X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-6d515010b35978d795ad6fcbb288ca73824060d90a2d86832e41c3c9783a2e823</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMobk6ffZN-gW7507TJiyBDnbIxQQXfQpqka0bXjLSbzk9vRnXog5cL9-Gecy73B8AlgkMEs2S0zNVwhlAyTCFO0-QI9BFkJCYUvR2DPoQYxRxT1gNnTbOEoRKOTkEPUxyaoz54nPuFrO2nbK2rI1dEbWmiyWYl62hmW6dKV2tvZRVNdtq7hamj501VWG2i-YfVnetJtuW73J2Dk0JWjbn4ngPwenf7Mp7E0_n9w_hmGisKeRunmiIKEcwJ5RnTGadSp4XKc8yYkhlhOIEp1BxKrFnKCDYJUkQFLZHYMEwG4LrLXW_yldHK1K2XlVh7u5J-J5y04u-mtqVYuK1IMCaYZyFg1AUo75rGm-LgRVDssYqAVeyxig5rcFz9PnnQ_3AMAt4JTHh8a40XjbKmVkZbb1QrtLP_hn8BqPOHzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Libiad, Marouane ; Yadav, Pramod Kumar ; Vitvitsky, Victor ; Martinov, Michael ; Banerjee, Ruma</creator><creatorcontrib>Libiad, Marouane ; Yadav, Pramod Kumar ; Vitvitsky, Victor ; Martinov, Michael ; Banerjee, Ruma</creatorcontrib><description>Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.602664</identifier><identifier>PMID: 25225291</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Catalysis ; Cysteine - chemistry ; Cytochromes c - chemistry ; Enzymology ; Escherichia coli - enzymology ; Glutathione - chemistry ; Homeostasis ; Humans ; Hydrogen Sulfide - chemistry ; Hydrogen-Ion Concentration ; Kinetics ; Mitochondria - metabolism ; Oxidation-Reduction ; Oxygen - chemistry ; Quinone Reductases - chemistry ; Spectrophotometry, Ultraviolet ; Sulfides - chemistry ; Thiosulfate Sulfurtransferase - chemistry</subject><ispartof>The Journal of biological chemistry, 2014-11, Vol.289 (45), p.30901-30910</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-6d515010b35978d795ad6fcbb288ca73824060d90a2d86832e41c3c9783a2e823</citedby><cites>FETCH-LOGICAL-c509t-6d515010b35978d795ad6fcbb288ca73824060d90a2d86832e41c3c9783a2e823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4223297/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4223297/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25225291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Libiad, Marouane</creatorcontrib><creatorcontrib>Yadav, Pramod Kumar</creatorcontrib><creatorcontrib>Vitvitsky, Victor</creatorcontrib><creatorcontrib>Martinov, Michael</creatorcontrib><creatorcontrib>Banerjee, Ruma</creatorcontrib><title>Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed.</description><subject>Catalysis</subject><subject>Cysteine - chemistry</subject><subject>Cytochromes c - chemistry</subject><subject>Enzymology</subject><subject>Escherichia coli - enzymology</subject><subject>Glutathione - chemistry</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hydrogen Sulfide - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Mitochondria - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Oxygen - chemistry</subject><subject>Quinone Reductases - chemistry</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Sulfides - chemistry</subject><subject>Thiosulfate Sulfurtransferase - chemistry</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kF9LwzAUxYMobk6ffZN-gW7507TJiyBDnbIxQQXfQpqka0bXjLSbzk9vRnXog5cL9-Gecy73B8AlgkMEs2S0zNVwhlAyTCFO0-QI9BFkJCYUvR2DPoQYxRxT1gNnTbOEoRKOTkEPUxyaoz54nPuFrO2nbK2rI1dEbWmiyWYl62hmW6dKV2tvZRVNdtq7hamj501VWG2i-YfVnetJtuW73J2Dk0JWjbn4ngPwenf7Mp7E0_n9w_hmGisKeRunmiIKEcwJ5RnTGadSp4XKc8yYkhlhOIEp1BxKrFnKCDYJUkQFLZHYMEwG4LrLXW_yldHK1K2XlVh7u5J-J5y04u-mtqVYuK1IMCaYZyFg1AUo75rGm-LgRVDssYqAVeyxig5rcFz9PnnQ_3AMAt4JTHh8a40XjbKmVkZbb1QrtLP_hn8BqPOHzQ</recordid><startdate>20141107</startdate><enddate>20141107</enddate><creator>Libiad, Marouane</creator><creator>Yadav, Pramod Kumar</creator><creator>Vitvitsky, Victor</creator><creator>Martinov, Michael</creator><creator>Banerjee, Ruma</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20141107</creationdate><title>Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway</title><author>Libiad, Marouane ; Yadav, Pramod Kumar ; Vitvitsky, Victor ; Martinov, Michael ; Banerjee, Ruma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-6d515010b35978d795ad6fcbb288ca73824060d90a2d86832e41c3c9783a2e823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Catalysis</topic><topic>Cysteine - chemistry</topic><topic>Cytochromes c - chemistry</topic><topic>Enzymology</topic><topic>Escherichia coli - enzymology</topic><topic>Glutathione - chemistry</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hydrogen Sulfide - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Mitochondria - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Oxygen - chemistry</topic><topic>Quinone Reductases - chemistry</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Sulfides - chemistry</topic><topic>Thiosulfate Sulfurtransferase - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Libiad, Marouane</creatorcontrib><creatorcontrib>Yadav, Pramod Kumar</creatorcontrib><creatorcontrib>Vitvitsky, Victor</creatorcontrib><creatorcontrib>Martinov, Michael</creatorcontrib><creatorcontrib>Banerjee, Ruma</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Libiad, Marouane</au><au>Yadav, Pramod Kumar</au><au>Vitvitsky, Victor</au><au>Martinov, Michael</au><au>Banerjee, Ruma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-11-07</date><risdate>2014</risdate><volume>289</volume><issue>45</issue><spage>30901</spage><epage>30910</epage><pages>30901-30910</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25225291</pmid><doi>10.1074/jbc.M114.602664</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2014-11, Vol.289 (45), p.30901-30910 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4223297 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Catalysis Cysteine - chemistry Cytochromes c - chemistry Enzymology Escherichia coli - enzymology Glutathione - chemistry Homeostasis Humans Hydrogen Sulfide - chemistry Hydrogen-Ion Concentration Kinetics Mitochondria - metabolism Oxidation-Reduction Oxygen - chemistry Quinone Reductases - chemistry Spectrophotometry, Ultraviolet Sulfides - chemistry Thiosulfate Sulfurtransferase - chemistry |
title | Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organization%20of%20the%20Human%20Mitochondrial%20Hydrogen%20Sulfide%20Oxidation%20Pathway&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Libiad,%20Marouane&rft.date=2014-11-07&rft.volume=289&rft.issue=45&rft.spage=30901&rft.epage=30910&rft.pages=30901-30910&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.602664&rft_dat=%3Celsevier_pubme%3ES002192582033324X%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25225291&rft_els_id=S002192582033324X&rfr_iscdi=true |