Exosomes neutralize synaptic-plasticity-disrupting activity of Aβ assemblies in vivo
Exosomes, small extracellular vesicles of endosomal origin, have been suggested to be involved in both the metabolism and aggregation of Alzheimer's disease (AD)-associated amyloid β-protein (Aβ). Despite their ubiquitous presence and the inclusion of components which can potentially interact w...
Gespeichert in:
Veröffentlicht in: | Molecular brain 2013-11, Vol.6 (1), p.47-47, Article 47 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exosomes, small extracellular vesicles of endosomal origin, have been suggested to be involved in both the metabolism and aggregation of Alzheimer's disease (AD)-associated amyloid β-protein (Aβ). Despite their ubiquitous presence and the inclusion of components which can potentially interact with Aβ, the role of exosomes in regulating synaptic dysfunction induced by Aβ has not been explored.
We here provide in vivo evidence that exosomes derived from N2a cells or human cerebrospinal fluid can abrogate the synaptic-plasticity-disrupting activity of both synthetic and AD brain-derived Aβ. Mechanistically, this effect involves sequestration of synaptotoxic Aβ assemblies by exosomal surface proteins such as PrPC rather than Aβ proteolysis.
These data suggest that exosomes can counteract the inhibitory action of Aβ, which contributes to perpetual capability for synaptic plasticity. |
---|---|
ISSN: | 1756-6606 1756-6606 |
DOI: | 10.1186/1756-6606-6-47 |