A novel short‐term plasticity of intrinsic excitability in the hippocampal CA1 pyramidal cells

Key points Changes in neuronal activity often trigger compensatory mechanisms that stabilize neuron output. We have identified a novel form of short‐term plasticity of membrane excitability, which develops early after the eye‐opening period in rats. Holding the membrane potential of CA1 neurons at s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2014-07, Vol.592 (13), p.2845-2864
Hauptverfasser: Sánchez‐Aguilera, A., Sánchez‐Alonso, J. L., Vicente‐Torres, M. A., Colino, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2864
container_issue 13
container_start_page 2845
container_title The Journal of physiology
container_volume 592
creator Sánchez‐Aguilera, A.
Sánchez‐Alonso, J. L.
Vicente‐Torres, M. A.
Colino, A.
description Key points Changes in neuronal activity often trigger compensatory mechanisms that stabilize neuron output. We have identified a novel form of short‐term plasticity of membrane excitability, which develops early after the eye‐opening period in rats. Holding the membrane potential of CA1 neurons at subthreshold depolarization from 15 s to several minutes induces a reduction of the excitability. This plasticity requires an influx of T‐type Ca2+ current that modulates the A‐type K+ current. These results help us understand that the resting potential history could modify cell intrinsic excitability. Changes in neuronal activity often trigger compensatory mechanisms aimed at regulating network activity homeostatically. Here we have identified and characterized a novel form of compensatory short‐term plasticity of membrane excitability, which develops early after the eye‐opening period in rats (P16–19 days) but not before that developmental stage (P9–12 days old). Holding the membrane potential of CA1 neurons right below the firing threshold from 15 s to several minutes induced a potentiation of the repolarizing phase of the action potentials that contributed to a decrease in the firing rate of CA1 pyramidal neurons in vitro. Furthermore, the mechanism for inducing this plasticity required the action of intracellular Ca2+ entering through T‐type Ca2+ channels. This increase in Ca2+ subsequently activated the Ca2+ sensor K+ channel interacting protein 3, which led to the increase of an A‐type K+ current. These results suggest that Ca2+ modulation of somatic A‐current represents a new form of homeostatic regulation that provides CA1 pyramidal neurons with the ability to preserve their firing abilities in response to membrane potential variations on a scale from tens of seconds to several minutes.
doi_str_mv 10.1113/jphysiol.2014.273185
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4221824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3357084611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5528-7471f35d9dff1ec5876c109b5d8d51f0992de524b9056610844e1396ff519b43</originalsourceid><addsrcrecordid>eNqNkc9u1DAQxi0EokvhDRCyxIVLFo9jO_EFabWi_FElOOzdOIlDvHLiYGdbcuMR-ow8CY7SVsCpJ2s8v_n0zXwIvQSyBYD87XHs5mi921ICbEuLHEr-CG2ACZkVhcwfow0hlGZ5weEMPYvxSAjkRMqn6IyyggvByAZ92-HBXxmHY-fD9PvXzWRCj0en42RrO83Yt9gOU7BDtDU2P9OfrqxbOnbAU2dwZ8fR17oftcP7HeBxDrq3Tapq41x8jp602kXz4vY9R4eL94f9x-zyy4dP-91lVnNOy6xgBbQ5b2TTtmBqXhaiBiIr3pQNhzbZpo3hlFWSJOdASsYM5FK0LQdZsfwcvVtlx1PVm6Y2ybN2agy212FWXlv1b2ewnfrurxSjFEq6CLy5FQj-x8nESfU2LhvowfhTVCA4SyeT5AEoZ1SwclV9_R969KcwpEMsFAjCaAGJYitVBx9jMO29byBqCVvdha2WsNUadhp79ffO90N36SZArsC1dWZ-kKg6fP4qQJb5H4Nzuxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541604271</pqid></control><display><type>article</type><title>A novel short‐term plasticity of intrinsic excitability in the hippocampal CA1 pyramidal cells</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Sánchez‐Aguilera, A. ; Sánchez‐Alonso, J. L. ; Vicente‐Torres, M. A. ; Colino, A.</creator><creatorcontrib>Sánchez‐Aguilera, A. ; Sánchez‐Alonso, J. L. ; Vicente‐Torres, M. A. ; Colino, A.</creatorcontrib><description>Key points Changes in neuronal activity often trigger compensatory mechanisms that stabilize neuron output. We have identified a novel form of short‐term plasticity of membrane excitability, which develops early after the eye‐opening period in rats. Holding the membrane potential of CA1 neurons at subthreshold depolarization from 15 s to several minutes induces a reduction of the excitability. This plasticity requires an influx of T‐type Ca2+ current that modulates the A‐type K+ current. These results help us understand that the resting potential history could modify cell intrinsic excitability. Changes in neuronal activity often trigger compensatory mechanisms aimed at regulating network activity homeostatically. Here we have identified and characterized a novel form of compensatory short‐term plasticity of membrane excitability, which develops early after the eye‐opening period in rats (P16–19 days) but not before that developmental stage (P9–12 days old). Holding the membrane potential of CA1 neurons right below the firing threshold from 15 s to several minutes induced a potentiation of the repolarizing phase of the action potentials that contributed to a decrease in the firing rate of CA1 pyramidal neurons in vitro. Furthermore, the mechanism for inducing this plasticity required the action of intracellular Ca2+ entering through T‐type Ca2+ channels. This increase in Ca2+ subsequently activated the Ca2+ sensor K+ channel interacting protein 3, which led to the increase of an A‐type K+ current. These results suggest that Ca2+ modulation of somatic A‐current represents a new form of homeostatic regulation that provides CA1 pyramidal neurons with the ability to preserve their firing abilities in response to membrane potential variations on a scale from tens of seconds to several minutes.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2014.273185</identifier><identifier>PMID: 24756640</identifier><identifier>CODEN: JPHYA7</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Action Potentials ; Animals ; CA1 Region, Hippocampal - cytology ; CA1 Region, Hippocampal - physiology ; Calcium - metabolism ; Calcium Channels, T-Type - metabolism ; Cells, Cultured ; Female ; Kv Channel-Interacting Proteins - metabolism ; Male ; Neuronal Plasticity ; Neuroscience: Development/Plasticity/Repair ; Potassium Channels, Voltage-Gated - metabolism ; Pyramidal Cells - metabolism ; Pyramidal Cells - physiology ; Rats</subject><ispartof>The Journal of physiology, 2014-07, Vol.592 (13), p.2845-2864</ispartof><rights>2014 The Authors. The Journal of Physiology © 2014 The Physiological Society</rights><rights>2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.</rights><rights>Journal compilation © 2014 The Physiological Society</rights><rights>2014 The Authors. The Journal of Physiology © 2014 The Physiological Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5528-7471f35d9dff1ec5876c109b5d8d51f0992de524b9056610844e1396ff519b43</citedby><cites>FETCH-LOGICAL-c5528-7471f35d9dff1ec5876c109b5d8d51f0992de524b9056610844e1396ff519b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221824/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221824/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24756640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sánchez‐Aguilera, A.</creatorcontrib><creatorcontrib>Sánchez‐Alonso, J. L.</creatorcontrib><creatorcontrib>Vicente‐Torres, M. A.</creatorcontrib><creatorcontrib>Colino, A.</creatorcontrib><title>A novel short‐term plasticity of intrinsic excitability in the hippocampal CA1 pyramidal cells</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Key points Changes in neuronal activity often trigger compensatory mechanisms that stabilize neuron output. We have identified a novel form of short‐term plasticity of membrane excitability, which develops early after the eye‐opening period in rats. Holding the membrane potential of CA1 neurons at subthreshold depolarization from 15 s to several minutes induces a reduction of the excitability. This plasticity requires an influx of T‐type Ca2+ current that modulates the A‐type K+ current. These results help us understand that the resting potential history could modify cell intrinsic excitability. Changes in neuronal activity often trigger compensatory mechanisms aimed at regulating network activity homeostatically. Here we have identified and characterized a novel form of compensatory short‐term plasticity of membrane excitability, which develops early after the eye‐opening period in rats (P16–19 days) but not before that developmental stage (P9–12 days old). Holding the membrane potential of CA1 neurons right below the firing threshold from 15 s to several minutes induced a potentiation of the repolarizing phase of the action potentials that contributed to a decrease in the firing rate of CA1 pyramidal neurons in vitro. Furthermore, the mechanism for inducing this plasticity required the action of intracellular Ca2+ entering through T‐type Ca2+ channels. This increase in Ca2+ subsequently activated the Ca2+ sensor K+ channel interacting protein 3, which led to the increase of an A‐type K+ current. These results suggest that Ca2+ modulation of somatic A‐current represents a new form of homeostatic regulation that provides CA1 pyramidal neurons with the ability to preserve their firing abilities in response to membrane potential variations on a scale from tens of seconds to several minutes.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>CA1 Region, Hippocampal - cytology</subject><subject>CA1 Region, Hippocampal - physiology</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels, T-Type - metabolism</subject><subject>Cells, Cultured</subject><subject>Female</subject><subject>Kv Channel-Interacting Proteins - metabolism</subject><subject>Male</subject><subject>Neuronal Plasticity</subject><subject>Neuroscience: Development/Plasticity/Repair</subject><subject>Potassium Channels, Voltage-Gated - metabolism</subject><subject>Pyramidal Cells - metabolism</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9u1DAQxi0EokvhDRCyxIVLFo9jO_EFabWi_FElOOzdOIlDvHLiYGdbcuMR-ow8CY7SVsCpJ2s8v_n0zXwIvQSyBYD87XHs5mi921ICbEuLHEr-CG2ACZkVhcwfow0hlGZ5weEMPYvxSAjkRMqn6IyyggvByAZ92-HBXxmHY-fD9PvXzWRCj0en42RrO83Yt9gOU7BDtDU2P9OfrqxbOnbAU2dwZ8fR17oftcP7HeBxDrq3Tapq41x8jp602kXz4vY9R4eL94f9x-zyy4dP-91lVnNOy6xgBbQ5b2TTtmBqXhaiBiIr3pQNhzbZpo3hlFWSJOdASsYM5FK0LQdZsfwcvVtlx1PVm6Y2ybN2agy212FWXlv1b2ewnfrurxSjFEq6CLy5FQj-x8nESfU2LhvowfhTVCA4SyeT5AEoZ1SwclV9_R969KcwpEMsFAjCaAGJYitVBx9jMO29byBqCVvdha2WsNUadhp79ffO90N36SZArsC1dWZ-kKg6fP4qQJb5H4Nzuxg</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Sánchez‐Aguilera, A.</creator><creator>Sánchez‐Alonso, J. L.</creator><creator>Vicente‐Torres, M. A.</creator><creator>Colino, A.</creator><general>Wiley Subscription Services, Inc</general><general>BlackWell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140701</creationdate><title>A novel short‐term plasticity of intrinsic excitability in the hippocampal CA1 pyramidal cells</title><author>Sánchez‐Aguilera, A. ; Sánchez‐Alonso, J. L. ; Vicente‐Torres, M. A. ; Colino, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5528-7471f35d9dff1ec5876c109b5d8d51f0992de524b9056610844e1396ff519b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>CA1 Region, Hippocampal - cytology</topic><topic>CA1 Region, Hippocampal - physiology</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels, T-Type - metabolism</topic><topic>Cells, Cultured</topic><topic>Female</topic><topic>Kv Channel-Interacting Proteins - metabolism</topic><topic>Male</topic><topic>Neuronal Plasticity</topic><topic>Neuroscience: Development/Plasticity/Repair</topic><topic>Potassium Channels, Voltage-Gated - metabolism</topic><topic>Pyramidal Cells - metabolism</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez‐Aguilera, A.</creatorcontrib><creatorcontrib>Sánchez‐Alonso, J. L.</creatorcontrib><creatorcontrib>Vicente‐Torres, M. A.</creatorcontrib><creatorcontrib>Colino, A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez‐Aguilera, A.</au><au>Sánchez‐Alonso, J. L.</au><au>Vicente‐Torres, M. A.</au><au>Colino, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel short‐term plasticity of intrinsic excitability in the hippocampal CA1 pyramidal cells</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>592</volume><issue>13</issue><spage>2845</spage><epage>2864</epage><pages>2845-2864</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><coden>JPHYA7</coden><abstract>Key points Changes in neuronal activity often trigger compensatory mechanisms that stabilize neuron output. We have identified a novel form of short‐term plasticity of membrane excitability, which develops early after the eye‐opening period in rats. Holding the membrane potential of CA1 neurons at subthreshold depolarization from 15 s to several minutes induces a reduction of the excitability. This plasticity requires an influx of T‐type Ca2+ current that modulates the A‐type K+ current. These results help us understand that the resting potential history could modify cell intrinsic excitability. Changes in neuronal activity often trigger compensatory mechanisms aimed at regulating network activity homeostatically. Here we have identified and characterized a novel form of compensatory short‐term plasticity of membrane excitability, which develops early after the eye‐opening period in rats (P16–19 days) but not before that developmental stage (P9–12 days old). Holding the membrane potential of CA1 neurons right below the firing threshold from 15 s to several minutes induced a potentiation of the repolarizing phase of the action potentials that contributed to a decrease in the firing rate of CA1 pyramidal neurons in vitro. Furthermore, the mechanism for inducing this plasticity required the action of intracellular Ca2+ entering through T‐type Ca2+ channels. This increase in Ca2+ subsequently activated the Ca2+ sensor K+ channel interacting protein 3, which led to the increase of an A‐type K+ current. These results suggest that Ca2+ modulation of somatic A‐current represents a new form of homeostatic regulation that provides CA1 pyramidal neurons with the ability to preserve their firing abilities in response to membrane potential variations on a scale from tens of seconds to several minutes.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>24756640</pmid><doi>10.1113/jphysiol.2014.273185</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2014-07, Vol.592 (13), p.2845-2864
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4221824
source MEDLINE; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects Action Potentials
Animals
CA1 Region, Hippocampal - cytology
CA1 Region, Hippocampal - physiology
Calcium - metabolism
Calcium Channels, T-Type - metabolism
Cells, Cultured
Female
Kv Channel-Interacting Proteins - metabolism
Male
Neuronal Plasticity
Neuroscience: Development/Plasticity/Repair
Potassium Channels, Voltage-Gated - metabolism
Pyramidal Cells - metabolism
Pyramidal Cells - physiology
Rats
title A novel short‐term plasticity of intrinsic excitability in the hippocampal CA1 pyramidal cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20short%E2%80%90term%20plasticity%20of%20intrinsic%20excitability%20in%20the%20hippocampal%20CA1%20pyramidal%20cells&rft.jtitle=The%20Journal%20of%20physiology&rft.au=S%C3%A1nchez%E2%80%90Aguilera,%20A.&rft.date=2014-07-01&rft.volume=592&rft.issue=13&rft.spage=2845&rft.epage=2864&rft.pages=2845-2864&rft.issn=0022-3751&rft.eissn=1469-7793&rft.coden=JPHYA7&rft_id=info:doi/10.1113/jphysiol.2014.273185&rft_dat=%3Cproquest_pubme%3E3357084611%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541604271&rft_id=info:pmid/24756640&rfr_iscdi=true