Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus)
A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation. Through transcriptome profiling, mutant analyse...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2014-12, Vol.204 (4), p.1013-1027 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1027 |
---|---|
container_issue | 4 |
container_start_page | 1013 |
container_title | The New phytologist |
container_volume | 204 |
creator | Yuan, Yao‐Wu Sagawa, Janelle M. Frost, Laura Vela, James P. Bradshaw, Harvey D. |
description | A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation.
Through transcriptome profiling, mutant analyses and transgenic experiments, we aim to establish a ‘baseline’ floral anthocyanin regulation model in Mimulus lewisii and to examine the different ways of tinkering with this model in generating the diversity of floral anthocyanin patterns in other Mimulus species.
We find one WD40 and one bHLH gene controlling anthocyanin pigmentation in the entire corolla of M. lewisii and two R2R3-MYB genes, PELAN and NEGAN, controlling anthocyanin production in the petal lobe and nectar guide, respectively. The autoregulation of NEGAN might be a critical property to generate anthocyanin spots. Independent losses of PELAN expression (via different mechanisms) explain two natural yellow-flowered populations of M. cardinalis (typically red-flowered). The NEGAN ortholog is the only anthocyanin-activating MYB expressed in the M. guttatus flowers.
The mutant lines and transgenic tools available for M. lewisii will enable gene-by-gene replacement experiments to dissect the genetic and developmental bases of more complex floral color patterns, and to test hypotheses on phenotypic evolution in general. |
doi_str_mv | 10.1111/nph.12968 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4221532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.204.4.1013</jstor_id><sourcerecordid>newphytologist.204.4.1013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6798-f15bb54c13a7f47350a95dd99f4a06edb1b1378aecb85f38b738d1a7a4bb95a3</originalsourceid><addsrcrecordid>eNqNkUuP0zAUhS0EYkphwR9AkdjMLNLxO_YGCY2AQRoeiyKxs-zEaV0SO2MnVPn3uHSmAiQQd2PZ_u7RufcA8BzBFcp16YftCmHJxQOwQJTLUiBSPQQLCLEoOeVfz8CTlHYQQsk4fgzOMEOQcMQW4Ms6ap_q6IbRBa-7og5-jKErQlu0XYj5RftxG-pZe-eLwW1660d9gIt874P_ZucM7m1MxfkH10_dlC6egket7pJ9dncuwfrtm_XVdXnz6d37q9c3Zc0rKcoWMWMYrRHRVUsrwqCWrGmkbKmG3DYGmTyI0LY2grVEmIqIBulKU2Mk02QJXh1lh8n0tqmzs2xYDdH1Os4qaKd-__Fuqzbhu6IYI0ZwFji_E4jhdrJpVL1Lte067W2YkkKcE05YBeF_oBgywUmuJXj5B7oLU8zLTSovngghqaT_ohBHkmaUH6iLI1XHkFK07Wk6BNUhfJXDVz_Dz-yLX9dxIu_TzsDlEdi7zs5_V1IfP1_fS66OHbs0hnjq8HY_bOcxdGHjsnEMqaJZBhHyA9yeypg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1619425164</pqid></control><display><type>article</type><title>Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus)</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library</source><source>IngentaConnect Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Yuan, Yao‐Wu ; Sagawa, Janelle M. ; Frost, Laura ; Vela, James P. ; Bradshaw, Harvey D.</creator><creatorcontrib>Yuan, Yao‐Wu ; Sagawa, Janelle M. ; Frost, Laura ; Vela, James P. ; Bradshaw, Harvey D.</creatorcontrib><description>A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation.
Through transcriptome profiling, mutant analyses and transgenic experiments, we aim to establish a ‘baseline’ floral anthocyanin regulation model in Mimulus lewisii and to examine the different ways of tinkering with this model in generating the diversity of floral anthocyanin patterns in other Mimulus species.
We find one WD40 and one bHLH gene controlling anthocyanin pigmentation in the entire corolla of M. lewisii and two R2R3-MYB genes, PELAN and NEGAN, controlling anthocyanin production in the petal lobe and nectar guide, respectively. The autoregulation of NEGAN might be a critical property to generate anthocyanin spots. Independent losses of PELAN expression (via different mechanisms) explain two natural yellow-flowered populations of M. cardinalis (typically red-flowered). The NEGAN ortholog is the only anthocyanin-activating MYB expressed in the M. guttatus flowers.
The mutant lines and transgenic tools available for M. lewisii will enable gene-by-gene replacement experiments to dissect the genetic and developmental bases of more complex floral color patterns, and to test hypotheses on phenotypic evolution in general.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.12968</identifier><identifier>PMID: 25103615</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>anthocyanin pigmentation ; Anthocyanins ; Anthocyanins - genetics ; Anthocyanins - metabolism ; autoregulation ; Color ; Colour ; Corolla ; evolution ; Evolution & development ; flower color ; Flowers ; Flowers - genetics ; Flowers - metabolism ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes ; genetically modified organisms ; Genomics ; Mimulus ; Mimulus - genetics ; Mimulus - metabolism ; Model testing ; monkeyflowers (Mimulus) ; Mutants ; Mutation ; MYB‐bHLH‐WD40 ; natural variation ; Nectar ; Petals ; phenotypic evolution ; Phylogeny ; Pigmentation ; Pigments, Biological - genetics ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Plants, Genetically Modified ; Pollinators ; Reverse transcriptase polymerase chain reaction ; Sequencing ; Speciation ; Transcription ; transcription (genetics) ; Transcriptomes ; transcriptomics</subject><ispartof>The New phytologist, 2014-12, Vol.204 (4), p.1013-1027</ispartof><rights>2014 New Phytologist Trust</rights><rights>2014 The Authors. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust</rights><rights>2014 The Authors. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.</rights><rights>Copyright © 2014 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6798-f15bb54c13a7f47350a95dd99f4a06edb1b1378aecb85f38b738d1a7a4bb95a3</citedby><cites>FETCH-LOGICAL-c6798-f15bb54c13a7f47350a95dd99f4a06edb1b1378aecb85f38b738d1a7a4bb95a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.204.4.1013$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.204.4.1013$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25103615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Yao‐Wu</creatorcontrib><creatorcontrib>Sagawa, Janelle M.</creatorcontrib><creatorcontrib>Frost, Laura</creatorcontrib><creatorcontrib>Vela, James P.</creatorcontrib><creatorcontrib>Bradshaw, Harvey D.</creatorcontrib><title>Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus)</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation.
Through transcriptome profiling, mutant analyses and transgenic experiments, we aim to establish a ‘baseline’ floral anthocyanin regulation model in Mimulus lewisii and to examine the different ways of tinkering with this model in generating the diversity of floral anthocyanin patterns in other Mimulus species.
We find one WD40 and one bHLH gene controlling anthocyanin pigmentation in the entire corolla of M. lewisii and two R2R3-MYB genes, PELAN and NEGAN, controlling anthocyanin production in the petal lobe and nectar guide, respectively. The autoregulation of NEGAN might be a critical property to generate anthocyanin spots. Independent losses of PELAN expression (via different mechanisms) explain two natural yellow-flowered populations of M. cardinalis (typically red-flowered). The NEGAN ortholog is the only anthocyanin-activating MYB expressed in the M. guttatus flowers.
The mutant lines and transgenic tools available for M. lewisii will enable gene-by-gene replacement experiments to dissect the genetic and developmental bases of more complex floral color patterns, and to test hypotheses on phenotypic evolution in general.</description><subject>anthocyanin pigmentation</subject><subject>Anthocyanins</subject><subject>Anthocyanins - genetics</subject><subject>Anthocyanins - metabolism</subject><subject>autoregulation</subject><subject>Color</subject><subject>Colour</subject><subject>Corolla</subject><subject>evolution</subject><subject>Evolution & development</subject><subject>flower color</subject><subject>Flowers</subject><subject>Flowers - genetics</subject><subject>Flowers - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>genetically modified organisms</subject><subject>Genomics</subject><subject>Mimulus</subject><subject>Mimulus - genetics</subject><subject>Mimulus - metabolism</subject><subject>Model testing</subject><subject>monkeyflowers (Mimulus)</subject><subject>Mutants</subject><subject>Mutation</subject><subject>MYB‐bHLH‐WD40</subject><subject>natural variation</subject><subject>Nectar</subject><subject>Petals</subject><subject>phenotypic evolution</subject><subject>Phylogeny</subject><subject>Pigmentation</subject><subject>Pigments, Biological - genetics</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Pollinators</subject><subject>Reverse transcriptase polymerase chain reaction</subject><subject>Sequencing</subject><subject>Speciation</subject><subject>Transcription</subject><subject>transcription (genetics)</subject><subject>Transcriptomes</subject><subject>transcriptomics</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuP0zAUhS0EYkphwR9AkdjMLNLxO_YGCY2AQRoeiyKxs-zEaV0SO2MnVPn3uHSmAiQQd2PZ_u7RufcA8BzBFcp16YftCmHJxQOwQJTLUiBSPQQLCLEoOeVfz8CTlHYQQsk4fgzOMEOQcMQW4Ms6ap_q6IbRBa-7og5-jKErQlu0XYj5RftxG-pZe-eLwW1660d9gIt874P_ZucM7m1MxfkH10_dlC6egket7pJ9dncuwfrtm_XVdXnz6d37q9c3Zc0rKcoWMWMYrRHRVUsrwqCWrGmkbKmG3DYGmTyI0LY2grVEmIqIBulKU2Mk02QJXh1lh8n0tqmzs2xYDdH1Os4qaKd-__Fuqzbhu6IYI0ZwFji_E4jhdrJpVL1Lte067W2YkkKcE05YBeF_oBgywUmuJXj5B7oLU8zLTSovngghqaT_ohBHkmaUH6iLI1XHkFK07Wk6BNUhfJXDVz_Dz-yLX9dxIu_TzsDlEdi7zs5_V1IfP1_fS66OHbs0hnjq8HY_bOcxdGHjsnEMqaJZBhHyA9yeypg</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Yuan, Yao‐Wu</creator><creator>Sagawa, Janelle M.</creator><creator>Frost, Laura</creator><creator>Vela, James P.</creator><creator>Bradshaw, Harvey D.</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>201412</creationdate><title>Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus)</title><author>Yuan, Yao‐Wu ; Sagawa, Janelle M. ; Frost, Laura ; Vela, James P. ; Bradshaw, Harvey D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6798-f15bb54c13a7f47350a95dd99f4a06edb1b1378aecb85f38b738d1a7a4bb95a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>anthocyanin pigmentation</topic><topic>Anthocyanins</topic><topic>Anthocyanins - genetics</topic><topic>Anthocyanins - metabolism</topic><topic>autoregulation</topic><topic>Color</topic><topic>Colour</topic><topic>Corolla</topic><topic>evolution</topic><topic>Evolution & development</topic><topic>flower color</topic><topic>Flowers</topic><topic>Flowers - genetics</topic><topic>Flowers - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>genetically modified organisms</topic><topic>Genomics</topic><topic>Mimulus</topic><topic>Mimulus - genetics</topic><topic>Mimulus - metabolism</topic><topic>Model testing</topic><topic>monkeyflowers (Mimulus)</topic><topic>Mutants</topic><topic>Mutation</topic><topic>MYB‐bHLH‐WD40</topic><topic>natural variation</topic><topic>Nectar</topic><topic>Petals</topic><topic>phenotypic evolution</topic><topic>Phylogeny</topic><topic>Pigmentation</topic><topic>Pigments, Biological - genetics</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Pollinators</topic><topic>Reverse transcriptase polymerase chain reaction</topic><topic>Sequencing</topic><topic>Speciation</topic><topic>Transcription</topic><topic>transcription (genetics)</topic><topic>Transcriptomes</topic><topic>transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Yao‐Wu</creatorcontrib><creatorcontrib>Sagawa, Janelle M.</creatorcontrib><creatorcontrib>Frost, Laura</creatorcontrib><creatorcontrib>Vela, James P.</creatorcontrib><creatorcontrib>Bradshaw, Harvey D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Yao‐Wu</au><au>Sagawa, Janelle M.</au><au>Frost, Laura</au><au>Vela, James P.</au><au>Bradshaw, Harvey D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus)</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2014-12</date><risdate>2014</risdate><volume>204</volume><issue>4</issue><spage>1013</spage><epage>1027</epage><pages>1013-1027</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation.
Through transcriptome profiling, mutant analyses and transgenic experiments, we aim to establish a ‘baseline’ floral anthocyanin regulation model in Mimulus lewisii and to examine the different ways of tinkering with this model in generating the diversity of floral anthocyanin patterns in other Mimulus species.
We find one WD40 and one bHLH gene controlling anthocyanin pigmentation in the entire corolla of M. lewisii and two R2R3-MYB genes, PELAN and NEGAN, controlling anthocyanin production in the petal lobe and nectar guide, respectively. The autoregulation of NEGAN might be a critical property to generate anthocyanin spots. Independent losses of PELAN expression (via different mechanisms) explain two natural yellow-flowered populations of M. cardinalis (typically red-flowered). The NEGAN ortholog is the only anthocyanin-activating MYB expressed in the M. guttatus flowers.
The mutant lines and transgenic tools available for M. lewisii will enable gene-by-gene replacement experiments to dissect the genetic and developmental bases of more complex floral color patterns, and to test hypotheses on phenotypic evolution in general.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>25103615</pmid><doi>10.1111/nph.12968</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2014-12, Vol.204 (4), p.1013-1027 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4221532 |
source | Jstor Complete Legacy; MEDLINE; Wiley Online Library; IngentaConnect Open Access Journals; EZB Electronic Journals Library |
subjects | anthocyanin pigmentation Anthocyanins Anthocyanins - genetics Anthocyanins - metabolism autoregulation Color Colour Corolla evolution Evolution & development flower color Flowers Flowers - genetics Flowers - metabolism Gene expression Gene Expression Profiling Gene Expression Regulation, Plant Genes genetically modified organisms Genomics Mimulus Mimulus - genetics Mimulus - metabolism Model testing monkeyflowers (Mimulus) Mutants Mutation MYB‐bHLH‐WD40 natural variation Nectar Petals phenotypic evolution Phylogeny Pigmentation Pigments, Biological - genetics Plant Proteins - genetics Plant Proteins - metabolism Plants Plants, Genetically Modified Pollinators Reverse transcriptase polymerase chain reaction Sequencing Speciation Transcription transcription (genetics) Transcriptomes transcriptomics |
title | Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20control%20of%20floral%20anthocyanin%20pigmentation%20in%20monkeyflowers%20(Mimulus)&rft.jtitle=The%20New%20phytologist&rft.au=Yuan,%20Yao%E2%80%90Wu&rft.date=2014-12&rft.volume=204&rft.issue=4&rft.spage=1013&rft.epage=1027&rft.pages=1013-1027&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.12968&rft_dat=%3Cjstor_pubme%3Enewphytologist.204.4.1013%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1619425164&rft_id=info:pmid/25103615&rft_jstor_id=newphytologist.204.4.1013&rfr_iscdi=true |