Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus)

A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation. Through transcriptome profiling, mutant analyse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2014-12, Vol.204 (4), p.1013-1027
Hauptverfasser: Yuan, Yao‐Wu, Sagawa, Janelle M., Frost, Laura, Vela, James P., Bradshaw, Harvey D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1027
container_issue 4
container_start_page 1013
container_title The New phytologist
container_volume 204
creator Yuan, Yao‐Wu
Sagawa, Janelle M.
Frost, Laura
Vela, James P.
Bradshaw, Harvey D.
description A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation. Through transcriptome profiling, mutant analyses and transgenic experiments, we aim to establish a ‘baseline’ floral anthocyanin regulation model in Mimulus lewisii and to examine the different ways of tinkering with this model in generating the diversity of floral anthocyanin patterns in other Mimulus species. We find one WD40 and one bHLH gene controlling anthocyanin pigmentation in the entire corolla of M. lewisii and two R2R3-MYB genes, PELAN and NEGAN, controlling anthocyanin production in the petal lobe and nectar guide, respectively. The autoregulation of NEGAN might be a critical property to generate anthocyanin spots. Independent losses of PELAN expression (via different mechanisms) explain two natural yellow-flowered populations of M. cardinalis (typically red-flowered). The NEGAN ortholog is the only anthocyanin-activating MYB expressed in the M. guttatus flowers. The mutant lines and transgenic tools available for M. lewisii will enable gene-by-gene replacement experiments to dissect the genetic and developmental bases of more complex floral color patterns, and to test hypotheses on phenotypic evolution in general.
doi_str_mv 10.1111/nph.12968
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4221532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.204.4.1013</jstor_id><sourcerecordid>newphytologist.204.4.1013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6798-f15bb54c13a7f47350a95dd99f4a06edb1b1378aecb85f38b738d1a7a4bb95a3</originalsourceid><addsrcrecordid>eNqNkUuP0zAUhS0EYkphwR9AkdjMLNLxO_YGCY2AQRoeiyKxs-zEaV0SO2MnVPn3uHSmAiQQd2PZ_u7RufcA8BzBFcp16YftCmHJxQOwQJTLUiBSPQQLCLEoOeVfz8CTlHYQQsk4fgzOMEOQcMQW4Ms6ap_q6IbRBa-7og5-jKErQlu0XYj5RftxG-pZe-eLwW1660d9gIt874P_ZucM7m1MxfkH10_dlC6egket7pJ9dncuwfrtm_XVdXnz6d37q9c3Zc0rKcoWMWMYrRHRVUsrwqCWrGmkbKmG3DYGmTyI0LY2grVEmIqIBulKU2Mk02QJXh1lh8n0tqmzs2xYDdH1Os4qaKd-__Fuqzbhu6IYI0ZwFji_E4jhdrJpVL1Lte067W2YkkKcE05YBeF_oBgywUmuJXj5B7oLU8zLTSovngghqaT_ohBHkmaUH6iLI1XHkFK07Wk6BNUhfJXDVz_Dz-yLX9dxIu_TzsDlEdi7zs5_V1IfP1_fS66OHbs0hnjq8HY_bOcxdGHjsnEMqaJZBhHyA9yeypg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1619425164</pqid></control><display><type>article</type><title>Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus)</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library</source><source>IngentaConnect Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Yuan, Yao‐Wu ; Sagawa, Janelle M. ; Frost, Laura ; Vela, James P. ; Bradshaw, Harvey D.</creator><creatorcontrib>Yuan, Yao‐Wu ; Sagawa, Janelle M. ; Frost, Laura ; Vela, James P. ; Bradshaw, Harvey D.</creatorcontrib><description>A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation. Through transcriptome profiling, mutant analyses and transgenic experiments, we aim to establish a ‘baseline’ floral anthocyanin regulation model in Mimulus lewisii and to examine the different ways of tinkering with this model in generating the diversity of floral anthocyanin patterns in other Mimulus species. We find one WD40 and one bHLH gene controlling anthocyanin pigmentation in the entire corolla of M. lewisii and two R2R3-MYB genes, PELAN and NEGAN, controlling anthocyanin production in the petal lobe and nectar guide, respectively. The autoregulation of NEGAN might be a critical property to generate anthocyanin spots. Independent losses of PELAN expression (via different mechanisms) explain two natural yellow-flowered populations of M. cardinalis (typically red-flowered). The NEGAN ortholog is the only anthocyanin-activating MYB expressed in the M. guttatus flowers. The mutant lines and transgenic tools available for M. lewisii will enable gene-by-gene replacement experiments to dissect the genetic and developmental bases of more complex floral color patterns, and to test hypotheses on phenotypic evolution in general.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.12968</identifier><identifier>PMID: 25103615</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>anthocyanin pigmentation ; Anthocyanins ; Anthocyanins - genetics ; Anthocyanins - metabolism ; autoregulation ; Color ; Colour ; Corolla ; evolution ; Evolution &amp; development ; flower color ; Flowers ; Flowers - genetics ; Flowers - metabolism ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes ; genetically modified organisms ; Genomics ; Mimulus ; Mimulus - genetics ; Mimulus - metabolism ; Model testing ; monkeyflowers (Mimulus) ; Mutants ; Mutation ; MYB‐bHLH‐WD40 ; natural variation ; Nectar ; Petals ; phenotypic evolution ; Phylogeny ; Pigmentation ; Pigments, Biological - genetics ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Plants, Genetically Modified ; Pollinators ; Reverse transcriptase polymerase chain reaction ; Sequencing ; Speciation ; Transcription ; transcription (genetics) ; Transcriptomes ; transcriptomics</subject><ispartof>The New phytologist, 2014-12, Vol.204 (4), p.1013-1027</ispartof><rights>2014 New Phytologist Trust</rights><rights>2014 The Authors. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust</rights><rights>2014 The Authors. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.</rights><rights>Copyright © 2014 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6798-f15bb54c13a7f47350a95dd99f4a06edb1b1378aecb85f38b738d1a7a4bb95a3</citedby><cites>FETCH-LOGICAL-c6798-f15bb54c13a7f47350a95dd99f4a06edb1b1378aecb85f38b738d1a7a4bb95a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.204.4.1013$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.204.4.1013$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25103615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Yao‐Wu</creatorcontrib><creatorcontrib>Sagawa, Janelle M.</creatorcontrib><creatorcontrib>Frost, Laura</creatorcontrib><creatorcontrib>Vela, James P.</creatorcontrib><creatorcontrib>Bradshaw, Harvey D.</creatorcontrib><title>Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus)</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation. Through transcriptome profiling, mutant analyses and transgenic experiments, we aim to establish a ‘baseline’ floral anthocyanin regulation model in Mimulus lewisii and to examine the different ways of tinkering with this model in generating the diversity of floral anthocyanin patterns in other Mimulus species. We find one WD40 and one bHLH gene controlling anthocyanin pigmentation in the entire corolla of M. lewisii and two R2R3-MYB genes, PELAN and NEGAN, controlling anthocyanin production in the petal lobe and nectar guide, respectively. The autoregulation of NEGAN might be a critical property to generate anthocyanin spots. Independent losses of PELAN expression (via different mechanisms) explain two natural yellow-flowered populations of M. cardinalis (typically red-flowered). The NEGAN ortholog is the only anthocyanin-activating MYB expressed in the M. guttatus flowers. The mutant lines and transgenic tools available for M. lewisii will enable gene-by-gene replacement experiments to dissect the genetic and developmental bases of more complex floral color patterns, and to test hypotheses on phenotypic evolution in general.</description><subject>anthocyanin pigmentation</subject><subject>Anthocyanins</subject><subject>Anthocyanins - genetics</subject><subject>Anthocyanins - metabolism</subject><subject>autoregulation</subject><subject>Color</subject><subject>Colour</subject><subject>Corolla</subject><subject>evolution</subject><subject>Evolution &amp; development</subject><subject>flower color</subject><subject>Flowers</subject><subject>Flowers - genetics</subject><subject>Flowers - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>genetically modified organisms</subject><subject>Genomics</subject><subject>Mimulus</subject><subject>Mimulus - genetics</subject><subject>Mimulus - metabolism</subject><subject>Model testing</subject><subject>monkeyflowers (Mimulus)</subject><subject>Mutants</subject><subject>Mutation</subject><subject>MYB‐bHLH‐WD40</subject><subject>natural variation</subject><subject>Nectar</subject><subject>Petals</subject><subject>phenotypic evolution</subject><subject>Phylogeny</subject><subject>Pigmentation</subject><subject>Pigments, Biological - genetics</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Pollinators</subject><subject>Reverse transcriptase polymerase chain reaction</subject><subject>Sequencing</subject><subject>Speciation</subject><subject>Transcription</subject><subject>transcription (genetics)</subject><subject>Transcriptomes</subject><subject>transcriptomics</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuP0zAUhS0EYkphwR9AkdjMLNLxO_YGCY2AQRoeiyKxs-zEaV0SO2MnVPn3uHSmAiQQd2PZ_u7RufcA8BzBFcp16YftCmHJxQOwQJTLUiBSPQQLCLEoOeVfz8CTlHYQQsk4fgzOMEOQcMQW4Ms6ap_q6IbRBa-7og5-jKErQlu0XYj5RftxG-pZe-eLwW1660d9gIt874P_ZucM7m1MxfkH10_dlC6egket7pJ9dncuwfrtm_XVdXnz6d37q9c3Zc0rKcoWMWMYrRHRVUsrwqCWrGmkbKmG3DYGmTyI0LY2grVEmIqIBulKU2Mk02QJXh1lh8n0tqmzs2xYDdH1Os4qaKd-__Fuqzbhu6IYI0ZwFji_E4jhdrJpVL1Lte067W2YkkKcE05YBeF_oBgywUmuJXj5B7oLU8zLTSovngghqaT_ohBHkmaUH6iLI1XHkFK07Wk6BNUhfJXDVz_Dz-yLX9dxIu_TzsDlEdi7zs5_V1IfP1_fS66OHbs0hnjq8HY_bOcxdGHjsnEMqaJZBhHyA9yeypg</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Yuan, Yao‐Wu</creator><creator>Sagawa, Janelle M.</creator><creator>Frost, Laura</creator><creator>Vela, James P.</creator><creator>Bradshaw, Harvey D.</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>201412</creationdate><title>Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus)</title><author>Yuan, Yao‐Wu ; Sagawa, Janelle M. ; Frost, Laura ; Vela, James P. ; Bradshaw, Harvey D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6798-f15bb54c13a7f47350a95dd99f4a06edb1b1378aecb85f38b738d1a7a4bb95a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>anthocyanin pigmentation</topic><topic>Anthocyanins</topic><topic>Anthocyanins - genetics</topic><topic>Anthocyanins - metabolism</topic><topic>autoregulation</topic><topic>Color</topic><topic>Colour</topic><topic>Corolla</topic><topic>evolution</topic><topic>Evolution &amp; development</topic><topic>flower color</topic><topic>Flowers</topic><topic>Flowers - genetics</topic><topic>Flowers - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>genetically modified organisms</topic><topic>Genomics</topic><topic>Mimulus</topic><topic>Mimulus - genetics</topic><topic>Mimulus - metabolism</topic><topic>Model testing</topic><topic>monkeyflowers (Mimulus)</topic><topic>Mutants</topic><topic>Mutation</topic><topic>MYB‐bHLH‐WD40</topic><topic>natural variation</topic><topic>Nectar</topic><topic>Petals</topic><topic>phenotypic evolution</topic><topic>Phylogeny</topic><topic>Pigmentation</topic><topic>Pigments, Biological - genetics</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Pollinators</topic><topic>Reverse transcriptase polymerase chain reaction</topic><topic>Sequencing</topic><topic>Speciation</topic><topic>Transcription</topic><topic>transcription (genetics)</topic><topic>Transcriptomes</topic><topic>transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Yao‐Wu</creatorcontrib><creatorcontrib>Sagawa, Janelle M.</creatorcontrib><creatorcontrib>Frost, Laura</creatorcontrib><creatorcontrib>Vela, James P.</creatorcontrib><creatorcontrib>Bradshaw, Harvey D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Yao‐Wu</au><au>Sagawa, Janelle M.</au><au>Frost, Laura</au><au>Vela, James P.</au><au>Bradshaw, Harvey D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus)</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2014-12</date><risdate>2014</risdate><volume>204</volume><issue>4</issue><spage>1013</spage><epage>1027</epage><pages>1013-1027</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation. Through transcriptome profiling, mutant analyses and transgenic experiments, we aim to establish a ‘baseline’ floral anthocyanin regulation model in Mimulus lewisii and to examine the different ways of tinkering with this model in generating the diversity of floral anthocyanin patterns in other Mimulus species. We find one WD40 and one bHLH gene controlling anthocyanin pigmentation in the entire corolla of M. lewisii and two R2R3-MYB genes, PELAN and NEGAN, controlling anthocyanin production in the petal lobe and nectar guide, respectively. The autoregulation of NEGAN might be a critical property to generate anthocyanin spots. Independent losses of PELAN expression (via different mechanisms) explain two natural yellow-flowered populations of M. cardinalis (typically red-flowered). The NEGAN ortholog is the only anthocyanin-activating MYB expressed in the M. guttatus flowers. The mutant lines and transgenic tools available for M. lewisii will enable gene-by-gene replacement experiments to dissect the genetic and developmental bases of more complex floral color patterns, and to test hypotheses on phenotypic evolution in general.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>25103615</pmid><doi>10.1111/nph.12968</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2014-12, Vol.204 (4), p.1013-1027
issn 0028-646X
1469-8137
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4221532
source Jstor Complete Legacy; MEDLINE; Wiley Online Library; IngentaConnect Open Access Journals; EZB Electronic Journals Library
subjects anthocyanin pigmentation
Anthocyanins
Anthocyanins - genetics
Anthocyanins - metabolism
autoregulation
Color
Colour
Corolla
evolution
Evolution & development
flower color
Flowers
Flowers - genetics
Flowers - metabolism
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Plant
Genes
genetically modified organisms
Genomics
Mimulus
Mimulus - genetics
Mimulus - metabolism
Model testing
monkeyflowers (Mimulus)
Mutants
Mutation
MYB‐bHLH‐WD40
natural variation
Nectar
Petals
phenotypic evolution
Phylogeny
Pigmentation
Pigments, Biological - genetics
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Plants, Genetically Modified
Pollinators
Reverse transcriptase polymerase chain reaction
Sequencing
Speciation
Transcription
transcription (genetics)
Transcriptomes
transcriptomics
title Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20control%20of%20floral%20anthocyanin%20pigmentation%20in%20monkeyflowers%20(Mimulus)&rft.jtitle=The%20New%20phytologist&rft.au=Yuan,%20Yao%E2%80%90Wu&rft.date=2014-12&rft.volume=204&rft.issue=4&rft.spage=1013&rft.epage=1027&rft.pages=1013-1027&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.12968&rft_dat=%3Cjstor_pubme%3Enewphytologist.204.4.1013%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1619425164&rft_id=info:pmid/25103615&rft_jstor_id=newphytologist.204.4.1013&rfr_iscdi=true