Structure of the 2,4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP

The enzyme 2,4′‐dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2,4′‐dihydroxyacetophenone to 4‐hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2014-09, Vol.70 (9), p.2444-2454
Hauptverfasser: Keegan, R., Lebedev, A., Erskine, P., Guo, J., Wood, S. P., Hopper, D. J., Rigby, S. E. J., Cooper, J. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2454
container_issue 9
container_start_page 2444
container_title Acta crystallographica. Section D, Biological crystallography.
container_volume 70
creator Keegan, R.
Lebedev, A.
Erskine, P.
Guo, J.
Wood, S. P.
Hopper, D. J.
Rigby, S. E. J.
Cooper, J. B.
description The enzyme 2,4′‐dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2,4′‐dihydroxyacetophenone to 4‐hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X‐ray structure of a DAD enzyme from the Gram‐negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active‐site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α‐hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in the predominantly hydrophobic active‐site pocket where it undergoes peroxide radical‐mediated heterolysis.
doi_str_mv 10.1107/S1399004714015053
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4219425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671558033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5334-82cafa7a65d92beb231859e852b2d3dacfc6097d407c1d90c9024f6e8c57359a3</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEoj_wAGxQJDYsSPHfjeMNUtTSKVJVkAao6MbyODcdl0w82Enp7HgmHoknIVHKUMSiK1vH3znXvr5J8oySA0qJfD2nXClChKSCUCDAHyS7o5SN2sM7-51kL8YrQghjXD5OdhhQBRLkbjKfd6G3XR8w9XXaLTFlr8SvHz-zyi03VfA3G2Ox8-sltr7FtHKDcomtiZjWwa_SsrGmcYOCMY3rg1SclB-eJI9q00R8ervuJ5-O3348PMlO38_eHZanmQXORVYwa2ojTQ6VYgtcME4LUFgAW7CKV8bWNidKVoJISytFrCJM1DkWFiQHZfh-8mbKXfeLFVYW2y6YRq-DW5mw0d44_e9J65b60l9rwagSDIaAF1OAj53T0boO7dL6tkXb6aFVQsqcDNTL2zLBf-sxdnrlosWmMS36PmqaSwpQEM7vRyGnhDNRFH9rb9Er34d26NdIEQAQQgwUnSgbfIwB6-3rKNHjDOj_ZmDwPL_blq3jz6cPgJqA767Bzf2JuvxyxM5LIHK8UDZ5XezwZus14avOJZegz89m-riYfb44OrvQBf8NPKbK-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560555444</pqid></control><display><type>article</type><title>Structure of the 2,4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Keegan, R. ; Lebedev, A. ; Erskine, P. ; Guo, J. ; Wood, S. P. ; Hopper, D. J. ; Rigby, S. E. J. ; Cooper, J. B.</creator><creatorcontrib>Keegan, R. ; Lebedev, A. ; Erskine, P. ; Guo, J. ; Wood, S. P. ; Hopper, D. J. ; Rigby, S. E. J. ; Cooper, J. B.</creatorcontrib><description>The enzyme 2,4′‐dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2,4′‐dihydroxyacetophenone to 4‐hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X‐ray structure of a DAD enzyme from the Gram‐negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active‐site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α‐hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in the predominantly hydrophobic active‐site pocket where it undergoes peroxide radical‐mediated heterolysis.</description><identifier>ISSN: 1399-0047</identifier><identifier>ISSN: 0907-4449</identifier><identifier>EISSN: 1399-0047</identifier><identifier>DOI: 10.1107/S1399004714015053</identifier><identifier>PMID: 25195757</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>ACETATES ; Alcaligenes - enzymology ; Amino Acid Sequence ; Amino acids ; Aromatic compounds ; Carbonates ; Catalysis ; Catalytic Domain ; catalytic mechanism ; CLEAVAGE ; COMPACTS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Crystallography, X-Ray ; cupin fold ; DENSITY ; dioxygenase ; Dioxygenases - chemistry ; ELECTRON DENSITY ; ELECTRONS ; Enzymes ; Formates ; HISTIDINE ; INTERFACES ; IRON ; iron binding ; LIGANDS ; Molecular Sequence Data ; Molecular structure ; MOLECULES ; OXYGEN ; Protein Conformation ; Research Papers ; RINGS ; Sequence Homology, Amino Acid ; SUBSTRATES</subject><ispartof>Acta crystallographica. Section D, Biological crystallography., 2014-09, Vol.70 (9), p.2444-2454</ispartof><rights>International Union of Crystallography, 2014</rights><rights>Keegan et al. 2014 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5334-82cafa7a65d92beb231859e852b2d3dacfc6097d407c1d90c9024f6e8c57359a3</citedby><cites>FETCH-LOGICAL-c5334-82cafa7a65d92beb231859e852b2d3dacfc6097d407c1d90c9024f6e8c57359a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1399004714015053$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1399004714015053$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25195757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22347760$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Keegan, R.</creatorcontrib><creatorcontrib>Lebedev, A.</creatorcontrib><creatorcontrib>Erskine, P.</creatorcontrib><creatorcontrib>Guo, J.</creatorcontrib><creatorcontrib>Wood, S. P.</creatorcontrib><creatorcontrib>Hopper, D. J.</creatorcontrib><creatorcontrib>Rigby, S. E. J.</creatorcontrib><creatorcontrib>Cooper, J. B.</creatorcontrib><title>Structure of the 2,4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP</title><title>Acta crystallographica. Section D, Biological crystallography.</title><addtitle>Acta Crystallographica D</addtitle><description>The enzyme 2,4′‐dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2,4′‐dihydroxyacetophenone to 4‐hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X‐ray structure of a DAD enzyme from the Gram‐negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active‐site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α‐hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in the predominantly hydrophobic active‐site pocket where it undergoes peroxide radical‐mediated heterolysis.</description><subject>ACETATES</subject><subject>Alcaligenes - enzymology</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Aromatic compounds</subject><subject>Carbonates</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>catalytic mechanism</subject><subject>CLEAVAGE</subject><subject>COMPACTS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Crystallography, X-Ray</subject><subject>cupin fold</subject><subject>DENSITY</subject><subject>dioxygenase</subject><subject>Dioxygenases - chemistry</subject><subject>ELECTRON DENSITY</subject><subject>ELECTRONS</subject><subject>Enzymes</subject><subject>Formates</subject><subject>HISTIDINE</subject><subject>INTERFACES</subject><subject>IRON</subject><subject>iron binding</subject><subject>LIGANDS</subject><subject>Molecular Sequence Data</subject><subject>Molecular structure</subject><subject>MOLECULES</subject><subject>OXYGEN</subject><subject>Protein Conformation</subject><subject>Research Papers</subject><subject>RINGS</subject><subject>Sequence Homology, Amino Acid</subject><subject>SUBSTRATES</subject><issn>1399-0047</issn><issn>0907-4449</issn><issn>1399-0047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1u1DAUhSMEoj_wAGxQJDYsSPHfjeMNUtTSKVJVkAao6MbyODcdl0w82Enp7HgmHoknIVHKUMSiK1vH3znXvr5J8oySA0qJfD2nXClChKSCUCDAHyS7o5SN2sM7-51kL8YrQghjXD5OdhhQBRLkbjKfd6G3XR8w9XXaLTFlr8SvHz-zyi03VfA3G2Ox8-sltr7FtHKDcomtiZjWwa_SsrGmcYOCMY3rg1SclB-eJI9q00R8ervuJ5-O3348PMlO38_eHZanmQXORVYwa2ojTQ6VYgtcME4LUFgAW7CKV8bWNidKVoJISytFrCJM1DkWFiQHZfh-8mbKXfeLFVYW2y6YRq-DW5mw0d44_e9J65b60l9rwagSDIaAF1OAj53T0boO7dL6tkXb6aFVQsqcDNTL2zLBf-sxdnrlosWmMS36PmqaSwpQEM7vRyGnhDNRFH9rb9Er34d26NdIEQAQQgwUnSgbfIwB6-3rKNHjDOj_ZmDwPL_blq3jz6cPgJqA767Bzf2JuvxyxM5LIHK8UDZ5XezwZus14avOJZegz89m-riYfb44OrvQBf8NPKbK-g</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Keegan, R.</creator><creator>Lebedev, A.</creator><creator>Erskine, P.</creator><creator>Guo, J.</creator><creator>Wood, S. P.</creator><creator>Hopper, D. J.</creator><creator>Rigby, S. E. J.</creator><creator>Cooper, J. B.</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SP</scope><scope>7SR</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>201409</creationdate><title>Structure of the 2,4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP</title><author>Keegan, R. ; Lebedev, A. ; Erskine, P. ; Guo, J. ; Wood, S. P. ; Hopper, D. J. ; Rigby, S. E. J. ; Cooper, J. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5334-82cafa7a65d92beb231859e852b2d3dacfc6097d407c1d90c9024f6e8c57359a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ACETATES</topic><topic>Alcaligenes - enzymology</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Aromatic compounds</topic><topic>Carbonates</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>catalytic mechanism</topic><topic>CLEAVAGE</topic><topic>COMPACTS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Crystallography, X-Ray</topic><topic>cupin fold</topic><topic>DENSITY</topic><topic>dioxygenase</topic><topic>Dioxygenases - chemistry</topic><topic>ELECTRON DENSITY</topic><topic>ELECTRONS</topic><topic>Enzymes</topic><topic>Formates</topic><topic>HISTIDINE</topic><topic>INTERFACES</topic><topic>IRON</topic><topic>iron binding</topic><topic>LIGANDS</topic><topic>Molecular Sequence Data</topic><topic>Molecular structure</topic><topic>MOLECULES</topic><topic>OXYGEN</topic><topic>Protein Conformation</topic><topic>Research Papers</topic><topic>RINGS</topic><topic>Sequence Homology, Amino Acid</topic><topic>SUBSTRATES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keegan, R.</creatorcontrib><creatorcontrib>Lebedev, A.</creatorcontrib><creatorcontrib>Erskine, P.</creatorcontrib><creatorcontrib>Guo, J.</creatorcontrib><creatorcontrib>Wood, S. P.</creatorcontrib><creatorcontrib>Hopper, D. J.</creatorcontrib><creatorcontrib>Rigby, S. E. J.</creatorcontrib><creatorcontrib>Cooper, J. B.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keegan, R.</au><au>Lebedev, A.</au><au>Erskine, P.</au><au>Guo, J.</au><au>Wood, S. P.</au><au>Hopper, D. J.</au><au>Rigby, S. E. J.</au><au>Cooper, J. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the 2,4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP</atitle><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle><addtitle>Acta Crystallographica D</addtitle><date>2014-09</date><risdate>2014</risdate><volume>70</volume><issue>9</issue><spage>2444</spage><epage>2454</epage><pages>2444-2454</pages><issn>1399-0047</issn><issn>0907-4449</issn><eissn>1399-0047</eissn><abstract>The enzyme 2,4′‐dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2,4′‐dihydroxyacetophenone to 4‐hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X‐ray structure of a DAD enzyme from the Gram‐negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active‐site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α‐hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in the predominantly hydrophobic active‐site pocket where it undergoes peroxide radical‐mediated heterolysis.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>25195757</pmid><doi>10.1107/S1399004714015053</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1399-0047
ispartof Acta crystallographica. Section D, Biological crystallography., 2014-09, Vol.70 (9), p.2444-2454
issn 1399-0047
0907-4449
1399-0047
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4219425
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects ACETATES
Alcaligenes - enzymology
Amino Acid Sequence
Amino acids
Aromatic compounds
Carbonates
Catalysis
Catalytic Domain
catalytic mechanism
CLEAVAGE
COMPACTS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Crystallography, X-Ray
cupin fold
DENSITY
dioxygenase
Dioxygenases - chemistry
ELECTRON DENSITY
ELECTRONS
Enzymes
Formates
HISTIDINE
INTERFACES
IRON
iron binding
LIGANDS
Molecular Sequence Data
Molecular structure
MOLECULES
OXYGEN
Protein Conformation
Research Papers
RINGS
Sequence Homology, Amino Acid
SUBSTRATES
title Structure of the 2,4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%202,4%E2%80%B2-dihydroxyacetophenone%20dioxygenase%20from%20Alcaligenes%20sp.%204HAP&rft.jtitle=Acta%20crystallographica.%20Section%20D,%20Biological%20crystallography.&rft.au=Keegan,%20R.&rft.date=2014-09&rft.volume=70&rft.issue=9&rft.spage=2444&rft.epage=2454&rft.pages=2444-2454&rft.issn=1399-0047&rft.eissn=1399-0047&rft_id=info:doi/10.1107/S1399004714015053&rft_dat=%3Cproquest_pubme%3E1671558033%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560555444&rft_id=info:pmid/25195757&rfr_iscdi=true