Revealing Origin of Decrease in Potency of Darunavir and Amprenavir against HIV-2 relative to HIV-1 Protease by Molecular Dynamics Simulations

Clinical inhibitors Darunavir (DRV) and Amprenavir (APV) are less effective on HIV-2 protease (PR2) than on HIV-1 protease (PR1). To identify molecular basis associated with the lower inhibition, molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2014-11, Vol.4 (1), p.6872-6872, Article 6872
Hauptverfasser: Chen, Jianzhong, Liang, Zhiqiang, Wang, Wei, Yi, Changhong, Zhang, Shaolong, Zhang, Qinggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6872
container_issue 1
container_start_page 6872
container_title Scientific reports
container_volume 4
creator Chen, Jianzhong
Liang, Zhiqiang
Wang, Wei
Yi, Changhong
Zhang, Shaolong
Zhang, Qinggang
description Clinical inhibitors Darunavir (DRV) and Amprenavir (APV) are less effective on HIV-2 protease (PR2) than on HIV-1 protease (PR1). To identify molecular basis associated with the lower inhibition, molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations were performed to investigate the effectiveness of the PR1 inhibitors DRV and APV against PR1/PR2. The rank of predicted binding free energies agrees with the experimental determined one. Moreover, our results show that two inhibitors bind less strongly to PR2 than to PR1, again in agreement with the experimental findings. The decrease in binding free energies for PR2 relative to PR1 is found to arise from the reduction of the van der Waals interactions induced by the structural adjustment of the triple mutant V32I, I47V and V82I. This result is further supported by the difference between the van der Waals interactions of inhibitors with each residue in PR2 and in PR1. The results from the principle component analysis suggest that inhibitor binding tends to make the flaps of PR2 close and the one of PR1 open. We expect that this study can theoretically provide significant guidance and dynamics information for the design of potent dual inhibitors targeting PR1/PR2.
doi_str_mv 10.1038/srep06872
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4217091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898057516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-3a820e5626ad0fc4fcf51702135f761736363d00da54a749255b6ee7e28d9c653</originalsourceid><addsrcrecordid>eNplkc9q3DAQxkVpaMI2h75AEfTSFtxIsiXbl0JImiaQkNB_VzErj10FW9pI9sK-RJ852ux22TaagzQzP30j8RHyhrNPnOXVSQy4YKoqxQtyJFghM5EL8XLvfEiOY7xnaUlRF7x-RQ6FzJWoVX5E_nzDJUJvXUdvg-2so76l52gCQkSa0js_ojOrpzKEycHSBgquoafDIuA27cC6ONLLq1-ZoAF7GO0S6eifKpzehSSy1puv6I3v0Uw9BHq-cjBYE-l3O0zrK97F1-SghT7i8XafkZ8XX36cXWbXt1-vzk6vMyNZMWY5VIKhVEJBw1pTtKaVvGSC57ItFS9zlaJhrAFZQFnUQsq5QixRVE1tlMxn5PNGdzHNB2wMujFArxfBDhBW2oPV_3ac_a07v9SFSHNqngTebwWCf5gwjnqw0WDfg0M_Rc2VYEzkLMWMvPsPvfdTcOl7mld1xWQpuUrUhw1lgo_J03b3GM702mi9Mzqxb_dfvyP_2pqAjxsgppbrMOyNfKb2CEevsjs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898057516</pqid></control><display><type>article</type><title>Revealing Origin of Decrease in Potency of Darunavir and Amprenavir against HIV-2 relative to HIV-1 Protease by Molecular Dynamics Simulations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Jianzhong ; Liang, Zhiqiang ; Wang, Wei ; Yi, Changhong ; Zhang, Shaolong ; Zhang, Qinggang</creator><creatorcontrib>Chen, Jianzhong ; Liang, Zhiqiang ; Wang, Wei ; Yi, Changhong ; Zhang, Shaolong ; Zhang, Qinggang</creatorcontrib><description>Clinical inhibitors Darunavir (DRV) and Amprenavir (APV) are less effective on HIV-2 protease (PR2) than on HIV-1 protease (PR1). To identify molecular basis associated with the lower inhibition, molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations were performed to investigate the effectiveness of the PR1 inhibitors DRV and APV against PR1/PR2. The rank of predicted binding free energies agrees with the experimental determined one. Moreover, our results show that two inhibitors bind less strongly to PR2 than to PR1, again in agreement with the experimental findings. The decrease in binding free energies for PR2 relative to PR1 is found to arise from the reduction of the van der Waals interactions induced by the structural adjustment of the triple mutant V32I, I47V and V82I. This result is further supported by the difference between the van der Waals interactions of inhibitors with each residue in PR2 and in PR1. The results from the principle component analysis suggest that inhibitor binding tends to make the flaps of PR2 close and the one of PR1 open. We expect that this study can theoretically provide significant guidance and dynamics information for the design of potent dual inhibitors targeting PR1/PR2.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep06872</identifier><identifier>PMID: 25362963</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 631/45/56 ; 631/57/2266 ; Acquired immune deficiency syndrome ; AIDS ; Amprenavir ; Carbamates - chemistry ; Catalytic Domain ; Correlation analysis ; Crystal structure ; Darunavir ; Design ; Drug resistance ; Drug Resistance, Viral ; Equilibrium ; FDA approval ; Flexibility ; HIV ; HIV Protease - chemistry ; HIV Protease Inhibitors - chemistry ; HIV-1 - enzymology ; HIV-2 - enzymology ; Human immunodeficiency virus ; Humanities and Social Sciences ; Hydrogen Bonding ; Inhibitors ; Molecular Dynamics Simulation ; multidisciplinary ; Mutation ; Principal components analysis ; Protein Binding ; Protein Structure, Secondary ; Proteinase ; Science ; Simulation ; Sulfonamides - chemistry ; Thermodynamics</subject><ispartof>Scientific reports, 2014-11, Vol.4 (1), p.6872-6872, Article 6872</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Nov 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-3a820e5626ad0fc4fcf51702135f761736363d00da54a749255b6ee7e28d9c653</citedby><cites>FETCH-LOGICAL-c504t-3a820e5626ad0fc4fcf51702135f761736363d00da54a749255b6ee7e28d9c653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217091/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217091/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25362963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jianzhong</creatorcontrib><creatorcontrib>Liang, Zhiqiang</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Yi, Changhong</creatorcontrib><creatorcontrib>Zhang, Shaolong</creatorcontrib><creatorcontrib>Zhang, Qinggang</creatorcontrib><title>Revealing Origin of Decrease in Potency of Darunavir and Amprenavir against HIV-2 relative to HIV-1 Protease by Molecular Dynamics Simulations</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Clinical inhibitors Darunavir (DRV) and Amprenavir (APV) are less effective on HIV-2 protease (PR2) than on HIV-1 protease (PR1). To identify molecular basis associated with the lower inhibition, molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations were performed to investigate the effectiveness of the PR1 inhibitors DRV and APV against PR1/PR2. The rank of predicted binding free energies agrees with the experimental determined one. Moreover, our results show that two inhibitors bind less strongly to PR2 than to PR1, again in agreement with the experimental findings. The decrease in binding free energies for PR2 relative to PR1 is found to arise from the reduction of the van der Waals interactions induced by the structural adjustment of the triple mutant V32I, I47V and V82I. This result is further supported by the difference between the van der Waals interactions of inhibitors with each residue in PR2 and in PR1. The results from the principle component analysis suggest that inhibitor binding tends to make the flaps of PR2 close and the one of PR1 open. We expect that this study can theoretically provide significant guidance and dynamics information for the design of potent dual inhibitors targeting PR1/PR2.</description><subject>119/118</subject><subject>631/45/56</subject><subject>631/57/2266</subject><subject>Acquired immune deficiency syndrome</subject><subject>AIDS</subject><subject>Amprenavir</subject><subject>Carbamates - chemistry</subject><subject>Catalytic Domain</subject><subject>Correlation analysis</subject><subject>Crystal structure</subject><subject>Darunavir</subject><subject>Design</subject><subject>Drug resistance</subject><subject>Drug Resistance, Viral</subject><subject>Equilibrium</subject><subject>FDA approval</subject><subject>Flexibility</subject><subject>HIV</subject><subject>HIV Protease - chemistry</subject><subject>HIV Protease Inhibitors - chemistry</subject><subject>HIV-1 - enzymology</subject><subject>HIV-2 - enzymology</subject><subject>Human immunodeficiency virus</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen Bonding</subject><subject>Inhibitors</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Principal components analysis</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Proteinase</subject><subject>Science</subject><subject>Simulation</subject><subject>Sulfonamides - chemistry</subject><subject>Thermodynamics</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkc9q3DAQxkVpaMI2h75AEfTSFtxIsiXbl0JImiaQkNB_VzErj10FW9pI9sK-RJ852ux22TaagzQzP30j8RHyhrNPnOXVSQy4YKoqxQtyJFghM5EL8XLvfEiOY7xnaUlRF7x-RQ6FzJWoVX5E_nzDJUJvXUdvg-2so76l52gCQkSa0js_ojOrpzKEycHSBgquoafDIuA27cC6ONLLq1-ZoAF7GO0S6eifKpzehSSy1puv6I3v0Uw9BHq-cjBYE-l3O0zrK97F1-SghT7i8XafkZ8XX36cXWbXt1-vzk6vMyNZMWY5VIKhVEJBw1pTtKaVvGSC57ItFS9zlaJhrAFZQFnUQsq5QixRVE1tlMxn5PNGdzHNB2wMujFArxfBDhBW2oPV_3ac_a07v9SFSHNqngTebwWCf5gwjnqw0WDfg0M_Rc2VYEzkLMWMvPsPvfdTcOl7mld1xWQpuUrUhw1lgo_J03b3GM702mi9Mzqxb_dfvyP_2pqAjxsgppbrMOyNfKb2CEevsjs</recordid><startdate>20141103</startdate><enddate>20141103</enddate><creator>Chen, Jianzhong</creator><creator>Liang, Zhiqiang</creator><creator>Wang, Wei</creator><creator>Yi, Changhong</creator><creator>Zhang, Shaolong</creator><creator>Zhang, Qinggang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141103</creationdate><title>Revealing Origin of Decrease in Potency of Darunavir and Amprenavir against HIV-2 relative to HIV-1 Protease by Molecular Dynamics Simulations</title><author>Chen, Jianzhong ; Liang, Zhiqiang ; Wang, Wei ; Yi, Changhong ; Zhang, Shaolong ; Zhang, Qinggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-3a820e5626ad0fc4fcf51702135f761736363d00da54a749255b6ee7e28d9c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>119/118</topic><topic>631/45/56</topic><topic>631/57/2266</topic><topic>Acquired immune deficiency syndrome</topic><topic>AIDS</topic><topic>Amprenavir</topic><topic>Carbamates - chemistry</topic><topic>Catalytic Domain</topic><topic>Correlation analysis</topic><topic>Crystal structure</topic><topic>Darunavir</topic><topic>Design</topic><topic>Drug resistance</topic><topic>Drug Resistance, Viral</topic><topic>Equilibrium</topic><topic>FDA approval</topic><topic>Flexibility</topic><topic>HIV</topic><topic>HIV Protease - chemistry</topic><topic>HIV Protease Inhibitors - chemistry</topic><topic>HIV-1 - enzymology</topic><topic>HIV-2 - enzymology</topic><topic>Human immunodeficiency virus</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen Bonding</topic><topic>Inhibitors</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Principal components analysis</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Proteinase</topic><topic>Science</topic><topic>Simulation</topic><topic>Sulfonamides - chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jianzhong</creatorcontrib><creatorcontrib>Liang, Zhiqiang</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Yi, Changhong</creatorcontrib><creatorcontrib>Zhang, Shaolong</creatorcontrib><creatorcontrib>Zhang, Qinggang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jianzhong</au><au>Liang, Zhiqiang</au><au>Wang, Wei</au><au>Yi, Changhong</au><au>Zhang, Shaolong</au><au>Zhang, Qinggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing Origin of Decrease in Potency of Darunavir and Amprenavir against HIV-2 relative to HIV-1 Protease by Molecular Dynamics Simulations</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-11-03</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>6872</spage><epage>6872</epage><pages>6872-6872</pages><artnum>6872</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Clinical inhibitors Darunavir (DRV) and Amprenavir (APV) are less effective on HIV-2 protease (PR2) than on HIV-1 protease (PR1). To identify molecular basis associated with the lower inhibition, molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations were performed to investigate the effectiveness of the PR1 inhibitors DRV and APV against PR1/PR2. The rank of predicted binding free energies agrees with the experimental determined one. Moreover, our results show that two inhibitors bind less strongly to PR2 than to PR1, again in agreement with the experimental findings. The decrease in binding free energies for PR2 relative to PR1 is found to arise from the reduction of the van der Waals interactions induced by the structural adjustment of the triple mutant V32I, I47V and V82I. This result is further supported by the difference between the van der Waals interactions of inhibitors with each residue in PR2 and in PR1. The results from the principle component analysis suggest that inhibitor binding tends to make the flaps of PR2 close and the one of PR1 open. We expect that this study can theoretically provide significant guidance and dynamics information for the design of potent dual inhibitors targeting PR1/PR2.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25362963</pmid><doi>10.1038/srep06872</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2014-11, Vol.4 (1), p.6872-6872, Article 6872
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4217091
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 119/118
631/45/56
631/57/2266
Acquired immune deficiency syndrome
AIDS
Amprenavir
Carbamates - chemistry
Catalytic Domain
Correlation analysis
Crystal structure
Darunavir
Design
Drug resistance
Drug Resistance, Viral
Equilibrium
FDA approval
Flexibility
HIV
HIV Protease - chemistry
HIV Protease Inhibitors - chemistry
HIV-1 - enzymology
HIV-2 - enzymology
Human immunodeficiency virus
Humanities and Social Sciences
Hydrogen Bonding
Inhibitors
Molecular Dynamics Simulation
multidisciplinary
Mutation
Principal components analysis
Protein Binding
Protein Structure, Secondary
Proteinase
Science
Simulation
Sulfonamides - chemistry
Thermodynamics
title Revealing Origin of Decrease in Potency of Darunavir and Amprenavir against HIV-2 relative to HIV-1 Protease by Molecular Dynamics Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20Origin%20of%20Decrease%20in%20Potency%20of%20Darunavir%20and%20Amprenavir%20against%20HIV-2%20relative%20to%20HIV-1%20Protease%20by%20Molecular%20Dynamics%20Simulations&rft.jtitle=Scientific%20reports&rft.au=Chen,%20Jianzhong&rft.date=2014-11-03&rft.volume=4&rft.issue=1&rft.spage=6872&rft.epage=6872&rft.pages=6872-6872&rft.artnum=6872&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep06872&rft_dat=%3Cproquest_pubme%3E1898057516%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898057516&rft_id=info:pmid/25362963&rfr_iscdi=true