Analysis of the Influence of Cell Heterogeneity on Nanoparticle Dose Response

Understanding the effect of variability in the interaction of individual cells with nanoparticles on the overall response of the cell population to a nanoagent is a fundamental challenge in bionanotechnology. Here, we show that the technique of time-resolved, high-throughput microscopy can be used i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2014-07, Vol.8 (7), p.6693-6700
Hauptverfasser: Ware, Matthew J, Godin, Biana, Singh, Neenu, Majithia, Ravish, Shamsudeen, Sabeel, Serda, Rita E, Meissner, Kenith E, Rees, Paul, Summers, Huw D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6700
container_issue 7
container_start_page 6693
container_title ACS nano
container_volume 8
creator Ware, Matthew J
Godin, Biana
Singh, Neenu
Majithia, Ravish
Shamsudeen, Sabeel
Serda, Rita E
Meissner, Kenith E
Rees, Paul
Summers, Huw D
description Understanding the effect of variability in the interaction of individual cells with nanoparticles on the overall response of the cell population to a nanoagent is a fundamental challenge in bionanotechnology. Here, we show that the technique of time-resolved, high-throughput microscopy can be used in this endeavor. Mass measurement with single-cell resolution provides statistically robust assessments of cell heterogeneity, while the addition of a temporal element allows assessment of separate processes leading to deconvolution of the effects of particle supply and biological response. We provide a specific demonstration of the approach, in vitro, through time-resolved measurement of fibroblast cell (HFF-1) death caused by exposure to cationic nanoparticles. The results show that heterogeneity in cell area is the major source of variability with area-dependent nanoparticle capture rates determining the time of cell death and hence the form of the exposure–response characteristic. Moreover, due to the particulate nature of the nanoparticle suspension, there is a reduction in the particle concentration over the course of the experiment, eventually causing saturation in the level of measured biological outcome. A generalized mathematical description of the system is proposed, based on a simple model of particle depletion from a finite supply reservoir. This captures the essential aspects of the nanoparticle–cell interaction dynamics and accurately predicts the population exposure–response curves from individual cell heterogeneity distributions.
doi_str_mv 10.1021/nn502356f
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4216222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d87890816</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-cb381b17bd14bcb2d5572302d128ac61177e24a304e1beeaefb46e42686659de3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMotlYP_gHJxYOH1SSbZLcXodSPFqqCKHgLSXa23bJNSrIV-u_dUl0UPM0w88wz8CJ0Tsk1JYzeOCcIS4UsD1CfDlOZkFx-HHa9oD10EuOSEJHlmTxGPcaHLM1y1kdPI6frbawi9iVuFoCnrqw34CzsBmOoazyBBoKfg4Oq2WLv8LN2fq1DU9ka8J2PgF8hrr2LcIqOSl1HOPuuA_T-cP82niSzl8fpeDRLNCeiSaxJc2poZgrKjTWsECJjKWEFZbm2ktIsA8Z1SjhQA6ChNFwCZzKXUgwLSAfodu9db8wKCguuCbpW61CtdNgqryv1d-OqhZr7T8UZlYyxVnC1F9jgYwxQdreUqF2mqsu0ZS9-P-vInxBb4HIPaBvV0m9CG2n8R_QFIBB_VQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of the Influence of Cell Heterogeneity on Nanoparticle Dose Response</title><source>ACS Publications</source><source>MEDLINE</source><creator>Ware, Matthew J ; Godin, Biana ; Singh, Neenu ; Majithia, Ravish ; Shamsudeen, Sabeel ; Serda, Rita E ; Meissner, Kenith E ; Rees, Paul ; Summers, Huw D</creator><creatorcontrib>Ware, Matthew J ; Godin, Biana ; Singh, Neenu ; Majithia, Ravish ; Shamsudeen, Sabeel ; Serda, Rita E ; Meissner, Kenith E ; Rees, Paul ; Summers, Huw D</creatorcontrib><description>Understanding the effect of variability in the interaction of individual cells with nanoparticles on the overall response of the cell population to a nanoagent is a fundamental challenge in bionanotechnology. Here, we show that the technique of time-resolved, high-throughput microscopy can be used in this endeavor. Mass measurement with single-cell resolution provides statistically robust assessments of cell heterogeneity, while the addition of a temporal element allows assessment of separate processes leading to deconvolution of the effects of particle supply and biological response. We provide a specific demonstration of the approach, in vitro, through time-resolved measurement of fibroblast cell (HFF-1) death caused by exposure to cationic nanoparticles. The results show that heterogeneity in cell area is the major source of variability with area-dependent nanoparticle capture rates determining the time of cell death and hence the form of the exposure–response characteristic. Moreover, due to the particulate nature of the nanoparticle suspension, there is a reduction in the particle concentration over the course of the experiment, eventually causing saturation in the level of measured biological outcome. A generalized mathematical description of the system is proposed, based on a simple model of particle depletion from a finite supply reservoir. This captures the essential aspects of the nanoparticle–cell interaction dynamics and accurately predicts the population exposure–response curves from individual cell heterogeneity distributions.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn502356f</identifier><identifier>PMID: 24923782</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biological Transport ; Cell Death - drug effects ; Cell Line ; Cell Membrane - drug effects ; Dose-Response Relationship, Drug ; Humans ; Nanoparticles - metabolism ; Nanoparticles - toxicity ; Time Factors</subject><ispartof>ACS nano, 2014-07, Vol.8 (7), p.6693-6700</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright © 2014 American Chemical Society 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-cb381b17bd14bcb2d5572302d128ac61177e24a304e1beeaefb46e42686659de3</citedby><cites>FETCH-LOGICAL-a405t-cb381b17bd14bcb2d5572302d128ac61177e24a304e1beeaefb46e42686659de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn502356f$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn502356f$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24923782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ware, Matthew J</creatorcontrib><creatorcontrib>Godin, Biana</creatorcontrib><creatorcontrib>Singh, Neenu</creatorcontrib><creatorcontrib>Majithia, Ravish</creatorcontrib><creatorcontrib>Shamsudeen, Sabeel</creatorcontrib><creatorcontrib>Serda, Rita E</creatorcontrib><creatorcontrib>Meissner, Kenith E</creatorcontrib><creatorcontrib>Rees, Paul</creatorcontrib><creatorcontrib>Summers, Huw D</creatorcontrib><title>Analysis of the Influence of Cell Heterogeneity on Nanoparticle Dose Response</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Understanding the effect of variability in the interaction of individual cells with nanoparticles on the overall response of the cell population to a nanoagent is a fundamental challenge in bionanotechnology. Here, we show that the technique of time-resolved, high-throughput microscopy can be used in this endeavor. Mass measurement with single-cell resolution provides statistically robust assessments of cell heterogeneity, while the addition of a temporal element allows assessment of separate processes leading to deconvolution of the effects of particle supply and biological response. We provide a specific demonstration of the approach, in vitro, through time-resolved measurement of fibroblast cell (HFF-1) death caused by exposure to cationic nanoparticles. The results show that heterogeneity in cell area is the major source of variability with area-dependent nanoparticle capture rates determining the time of cell death and hence the form of the exposure–response characteristic. Moreover, due to the particulate nature of the nanoparticle suspension, there is a reduction in the particle concentration over the course of the experiment, eventually causing saturation in the level of measured biological outcome. A generalized mathematical description of the system is proposed, based on a simple model of particle depletion from a finite supply reservoir. This captures the essential aspects of the nanoparticle–cell interaction dynamics and accurately predicts the population exposure–response curves from individual cell heterogeneity distributions.</description><subject>Biological Transport</subject><subject>Cell Death - drug effects</subject><subject>Cell Line</subject><subject>Cell Membrane - drug effects</subject><subject>Dose-Response Relationship, Drug</subject><subject>Humans</subject><subject>Nanoparticles - metabolism</subject><subject>Nanoparticles - toxicity</subject><subject>Time Factors</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNptkE1LAzEQhoMotlYP_gHJxYOH1SSbZLcXodSPFqqCKHgLSXa23bJNSrIV-u_dUl0UPM0w88wz8CJ0Tsk1JYzeOCcIS4UsD1CfDlOZkFx-HHa9oD10EuOSEJHlmTxGPcaHLM1y1kdPI6frbawi9iVuFoCnrqw34CzsBmOoazyBBoKfg4Oq2WLv8LN2fq1DU9ka8J2PgF8hrr2LcIqOSl1HOPuuA_T-cP82niSzl8fpeDRLNCeiSaxJc2poZgrKjTWsECJjKWEFZbm2ktIsA8Z1SjhQA6ChNFwCZzKXUgwLSAfodu9db8wKCguuCbpW61CtdNgqryv1d-OqhZr7T8UZlYyxVnC1F9jgYwxQdreUqF2mqsu0ZS9-P-vInxBb4HIPaBvV0m9CG2n8R_QFIBB_VQ</recordid><startdate>20140722</startdate><enddate>20140722</enddate><creator>Ware, Matthew J</creator><creator>Godin, Biana</creator><creator>Singh, Neenu</creator><creator>Majithia, Ravish</creator><creator>Shamsudeen, Sabeel</creator><creator>Serda, Rita E</creator><creator>Meissner, Kenith E</creator><creator>Rees, Paul</creator><creator>Summers, Huw D</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140722</creationdate><title>Analysis of the Influence of Cell Heterogeneity on Nanoparticle Dose Response</title><author>Ware, Matthew J ; Godin, Biana ; Singh, Neenu ; Majithia, Ravish ; Shamsudeen, Sabeel ; Serda, Rita E ; Meissner, Kenith E ; Rees, Paul ; Summers, Huw D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-cb381b17bd14bcb2d5572302d128ac61177e24a304e1beeaefb46e42686659de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological Transport</topic><topic>Cell Death - drug effects</topic><topic>Cell Line</topic><topic>Cell Membrane - drug effects</topic><topic>Dose-Response Relationship, Drug</topic><topic>Humans</topic><topic>Nanoparticles - metabolism</topic><topic>Nanoparticles - toxicity</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ware, Matthew J</creatorcontrib><creatorcontrib>Godin, Biana</creatorcontrib><creatorcontrib>Singh, Neenu</creatorcontrib><creatorcontrib>Majithia, Ravish</creatorcontrib><creatorcontrib>Shamsudeen, Sabeel</creatorcontrib><creatorcontrib>Serda, Rita E</creatorcontrib><creatorcontrib>Meissner, Kenith E</creatorcontrib><creatorcontrib>Rees, Paul</creatorcontrib><creatorcontrib>Summers, Huw D</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ware, Matthew J</au><au>Godin, Biana</au><au>Singh, Neenu</au><au>Majithia, Ravish</au><au>Shamsudeen, Sabeel</au><au>Serda, Rita E</au><au>Meissner, Kenith E</au><au>Rees, Paul</au><au>Summers, Huw D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Influence of Cell Heterogeneity on Nanoparticle Dose Response</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2014-07-22</date><risdate>2014</risdate><volume>8</volume><issue>7</issue><spage>6693</spage><epage>6700</epage><pages>6693-6700</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Understanding the effect of variability in the interaction of individual cells with nanoparticles on the overall response of the cell population to a nanoagent is a fundamental challenge in bionanotechnology. Here, we show that the technique of time-resolved, high-throughput microscopy can be used in this endeavor. Mass measurement with single-cell resolution provides statistically robust assessments of cell heterogeneity, while the addition of a temporal element allows assessment of separate processes leading to deconvolution of the effects of particle supply and biological response. We provide a specific demonstration of the approach, in vitro, through time-resolved measurement of fibroblast cell (HFF-1) death caused by exposure to cationic nanoparticles. The results show that heterogeneity in cell area is the major source of variability with area-dependent nanoparticle capture rates determining the time of cell death and hence the form of the exposure–response characteristic. Moreover, due to the particulate nature of the nanoparticle suspension, there is a reduction in the particle concentration over the course of the experiment, eventually causing saturation in the level of measured biological outcome. A generalized mathematical description of the system is proposed, based on a simple model of particle depletion from a finite supply reservoir. This captures the essential aspects of the nanoparticle–cell interaction dynamics and accurately predicts the population exposure–response curves from individual cell heterogeneity distributions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24923782</pmid><doi>10.1021/nn502356f</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2014-07, Vol.8 (7), p.6693-6700
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4216222
source ACS Publications; MEDLINE
subjects Biological Transport
Cell Death - drug effects
Cell Line
Cell Membrane - drug effects
Dose-Response Relationship, Drug
Humans
Nanoparticles - metabolism
Nanoparticles - toxicity
Time Factors
title Analysis of the Influence of Cell Heterogeneity on Nanoparticle Dose Response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T15%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Influence%20of%20Cell%20Heterogeneity%20on%20Nanoparticle%20Dose%20Response&rft.jtitle=ACS%20nano&rft.au=Ware,%20Matthew%20J&rft.date=2014-07-22&rft.volume=8&rft.issue=7&rft.spage=6693&rft.epage=6700&rft.pages=6693-6700&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn502356f&rft_dat=%3Cacs_pubme%3Ed87890816%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24923782&rfr_iscdi=true