Novel determinants of the neuronal Cl− concentration

It is now a well‐accepted view that cation‐driven Cl− transporters in neurons are involved in determining the intracellular Cl− concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl− gradient across neuronal membranes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2014-10, Vol.592 (19), p.4099-4114
Hauptverfasser: Delpire, Eric, Staley, Kevin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4114
container_issue 19
container_start_page 4099
container_title The Journal of physiology
container_volume 592
creator Delpire, Eric
Staley, Kevin J.
description It is now a well‐accepted view that cation‐driven Cl− transporters in neurons are involved in determining the intracellular Cl− concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl− gradient across neuronal membranes. After briefly discussing the data supporting and opposing the role of cation–chloride cotransporters in regulating Cl−, we examine the participation of the following factors in the formation of the transmembrane Cl− gradient: (i) fixed ‘Donnan’ charges inside and outside the cell; (ii) the properties of water (free vs. bound); and (iii) water transport through the cotransporters. We demonstrate a steep relationship between intracellular Cl− and the concentration of fixed negative charges on macromolecules. We show that in the absence of water transport through the K+–Cl− cotransporter, a large osmotic gradient builds at concentrations below or above a set value of ‘Donnan’ charges, and show that at any value of these fixed charges, the reversal potential for Cl− equates that of K+. When the movement of water across the membrane is a source of free energy, it is sufficient to modify the movement of Cl− through the cotransporter. In this scenario, the reversal potential for Cl− does not closely follow that of K+. Furthermore, our simulations demonstrate that small differences in the availability of freely diffusible water between inside and outside the cell greatly affect the Cl− reversal potential, particularly when osmolar transmembrane gradients are minimized, for example by idiogenic osmoles. We also establish that the presence of extracellular charges has little effect on the chloride reversal potential, but greatly affects the effective inhibitory conductance for Cl−. In conclusion, our theoretical analysis of the presence of fixed anionic charges and water bound on macromolecules inside and outside the cell greatly impacts both Cl− gradient and Cl− conductance across neuronal membranes.
doi_str_mv 10.1113/jphysiol.2014.275529
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4215762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1625342806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5855-d76cc11b91fbe34e19b7d2bbd693fe53931af6494b03b385c0aca5024a8ecc643</originalsourceid><addsrcrecordid>eNqNkc1u1DAQxy0EokvhDRCKxIVLFo8_4wsSWlE-VAGHcrYcZ8Jm5bUXOynaN-DcR-RJSJW2Ak49zWF-89fM_Ah5DnQNAPz17rA9liGFNaMg1kxLycwDsgKhTK214Q_JilLGaq4lnJAnpewoBU6NeUxOmASqDWtWRH1OlxiqDkfM-yG6OJYq9dW4xSrilFN0odqE37-uKp-ixzhmNw4pPiWPehcKPrupp-Tb2buLzYf6_Mv7j5u357WXjZR1p5X3AK2BvkUuEEyrO9a2nTK8R8kNB9crYURLecsb6anzTlImXIPeK8FPyZsl9zC1e-yWBYI95GHv8tEmN9h_O3HY2u_p0goGUis2B7y6Ccjpx4RltPuheAzBRUxTsaCMMJqyht8DZZIL1lA1oy__Q3dpyvOvZkoqpYAZRWdKLJTPqZSM_d3eQO21Q3vr0F47tIvDeezF3zffDd1KmwGzAD-HgMd7hdqLT18VB8n_AI3VrQ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566612960</pqid></control><display><type>article</type><title>Novel determinants of the neuronal Cl− concentration</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Delpire, Eric ; Staley, Kevin J.</creator><creatorcontrib>Delpire, Eric ; Staley, Kevin J.</creatorcontrib><description>It is now a well‐accepted view that cation‐driven Cl− transporters in neurons are involved in determining the intracellular Cl− concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl− gradient across neuronal membranes. After briefly discussing the data supporting and opposing the role of cation–chloride cotransporters in regulating Cl−, we examine the participation of the following factors in the formation of the transmembrane Cl− gradient: (i) fixed ‘Donnan’ charges inside and outside the cell; (ii) the properties of water (free vs. bound); and (iii) water transport through the cotransporters. We demonstrate a steep relationship between intracellular Cl− and the concentration of fixed negative charges on macromolecules. We show that in the absence of water transport through the K+–Cl− cotransporter, a large osmotic gradient builds at concentrations below or above a set value of ‘Donnan’ charges, and show that at any value of these fixed charges, the reversal potential for Cl− equates that of K+. When the movement of water across the membrane is a source of free energy, it is sufficient to modify the movement of Cl− through the cotransporter. In this scenario, the reversal potential for Cl− does not closely follow that of K+. Furthermore, our simulations demonstrate that small differences in the availability of freely diffusible water between inside and outside the cell greatly affect the Cl− reversal potential, particularly when osmolar transmembrane gradients are minimized, for example by idiogenic osmoles. We also establish that the presence of extracellular charges has little effect on the chloride reversal potential, but greatly affects the effective inhibitory conductance for Cl−. In conclusion, our theoretical analysis of the presence of fixed anionic charges and water bound on macromolecules inside and outside the cell greatly impacts both Cl− gradient and Cl− conductance across neuronal membranes.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2014.275529</identifier><identifier>PMID: 25107928</identifier><identifier>CODEN: JPHYA7</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biological Transport ; Cell Membrane - metabolism ; Chlorides - metabolism ; K Cl- Cotransporters ; Membrane Potentials - physiology ; Neurons - metabolism ; Symporters - metabolism ; Topical Reviews</subject><ispartof>The Journal of physiology, 2014-10, Vol.592 (19), p.4099-4114</ispartof><rights>2014 The Authors. The Journal of Physiology © 2014 The Physiological Society</rights><rights>2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.</rights><rights>Journal compilation © 2014 The Physiological Society</rights><rights>2014 The Authors. The Journal of Physiology © 2014 The Physiological Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5855-d76cc11b91fbe34e19b7d2bbd693fe53931af6494b03b385c0aca5024a8ecc643</citedby><cites>FETCH-LOGICAL-c5855-d76cc11b91fbe34e19b7d2bbd693fe53931af6494b03b385c0aca5024a8ecc643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215762/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215762/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,45553,45554,46388,46812,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25107928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Delpire, Eric</creatorcontrib><creatorcontrib>Staley, Kevin J.</creatorcontrib><title>Novel determinants of the neuronal Cl− concentration</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>It is now a well‐accepted view that cation‐driven Cl− transporters in neurons are involved in determining the intracellular Cl− concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl− gradient across neuronal membranes. After briefly discussing the data supporting and opposing the role of cation–chloride cotransporters in regulating Cl−, we examine the participation of the following factors in the formation of the transmembrane Cl− gradient: (i) fixed ‘Donnan’ charges inside and outside the cell; (ii) the properties of water (free vs. bound); and (iii) water transport through the cotransporters. We demonstrate a steep relationship between intracellular Cl− and the concentration of fixed negative charges on macromolecules. We show that in the absence of water transport through the K+–Cl− cotransporter, a large osmotic gradient builds at concentrations below or above a set value of ‘Donnan’ charges, and show that at any value of these fixed charges, the reversal potential for Cl− equates that of K+. When the movement of water across the membrane is a source of free energy, it is sufficient to modify the movement of Cl− through the cotransporter. In this scenario, the reversal potential for Cl− does not closely follow that of K+. Furthermore, our simulations demonstrate that small differences in the availability of freely diffusible water between inside and outside the cell greatly affect the Cl− reversal potential, particularly when osmolar transmembrane gradients are minimized, for example by idiogenic osmoles. We also establish that the presence of extracellular charges has little effect on the chloride reversal potential, but greatly affects the effective inhibitory conductance for Cl−. In conclusion, our theoretical analysis of the presence of fixed anionic charges and water bound on macromolecules inside and outside the cell greatly impacts both Cl− gradient and Cl− conductance across neuronal membranes.</description><subject>Animals</subject><subject>Biological Transport</subject><subject>Cell Membrane - metabolism</subject><subject>Chlorides - metabolism</subject><subject>K Cl- Cotransporters</subject><subject>Membrane Potentials - physiology</subject><subject>Neurons - metabolism</subject><subject>Symporters - metabolism</subject><subject>Topical Reviews</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAQxy0EokvhDRCKxIVLFo8_4wsSWlE-VAGHcrYcZ8Jm5bUXOynaN-DcR-RJSJW2Ak49zWF-89fM_Ah5DnQNAPz17rA9liGFNaMg1kxLycwDsgKhTK214Q_JilLGaq4lnJAnpewoBU6NeUxOmASqDWtWRH1OlxiqDkfM-yG6OJYq9dW4xSrilFN0odqE37-uKp-ixzhmNw4pPiWPehcKPrupp-Tb2buLzYf6_Mv7j5u357WXjZR1p5X3AK2BvkUuEEyrO9a2nTK8R8kNB9crYURLecsb6anzTlImXIPeK8FPyZsl9zC1e-yWBYI95GHv8tEmN9h_O3HY2u_p0goGUis2B7y6Ccjpx4RltPuheAzBRUxTsaCMMJqyht8DZZIL1lA1oy__Q3dpyvOvZkoqpYAZRWdKLJTPqZSM_d3eQO21Q3vr0F47tIvDeezF3zffDd1KmwGzAD-HgMd7hdqLT18VB8n_AI3VrQ4</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Delpire, Eric</creator><creator>Staley, Kevin J.</creator><general>Wiley Subscription Services, Inc</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141001</creationdate><title>Novel determinants of the neuronal Cl− concentration</title><author>Delpire, Eric ; Staley, Kevin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5855-d76cc11b91fbe34e19b7d2bbd693fe53931af6494b03b385c0aca5024a8ecc643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological Transport</topic><topic>Cell Membrane - metabolism</topic><topic>Chlorides - metabolism</topic><topic>K Cl- Cotransporters</topic><topic>Membrane Potentials - physiology</topic><topic>Neurons - metabolism</topic><topic>Symporters - metabolism</topic><topic>Topical Reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delpire, Eric</creatorcontrib><creatorcontrib>Staley, Kevin J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delpire, Eric</au><au>Staley, Kevin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel determinants of the neuronal Cl− concentration</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>592</volume><issue>19</issue><spage>4099</spage><epage>4114</epage><pages>4099-4114</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><coden>JPHYA7</coden><abstract>It is now a well‐accepted view that cation‐driven Cl− transporters in neurons are involved in determining the intracellular Cl− concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl− gradient across neuronal membranes. After briefly discussing the data supporting and opposing the role of cation–chloride cotransporters in regulating Cl−, we examine the participation of the following factors in the formation of the transmembrane Cl− gradient: (i) fixed ‘Donnan’ charges inside and outside the cell; (ii) the properties of water (free vs. bound); and (iii) water transport through the cotransporters. We demonstrate a steep relationship between intracellular Cl− and the concentration of fixed negative charges on macromolecules. We show that in the absence of water transport through the K+–Cl− cotransporter, a large osmotic gradient builds at concentrations below or above a set value of ‘Donnan’ charges, and show that at any value of these fixed charges, the reversal potential for Cl− equates that of K+. When the movement of water across the membrane is a source of free energy, it is sufficient to modify the movement of Cl− through the cotransporter. In this scenario, the reversal potential for Cl− does not closely follow that of K+. Furthermore, our simulations demonstrate that small differences in the availability of freely diffusible water between inside and outside the cell greatly affect the Cl− reversal potential, particularly when osmolar transmembrane gradients are minimized, for example by idiogenic osmoles. We also establish that the presence of extracellular charges has little effect on the chloride reversal potential, but greatly affects the effective inhibitory conductance for Cl−. In conclusion, our theoretical analysis of the presence of fixed anionic charges and water bound on macromolecules inside and outside the cell greatly impacts both Cl− gradient and Cl− conductance across neuronal membranes.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>25107928</pmid><doi>10.1113/jphysiol.2014.275529</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2014-10, Vol.592 (19), p.4099-4114
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4215762
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Biological Transport
Cell Membrane - metabolism
Chlorides - metabolism
K Cl- Cotransporters
Membrane Potentials - physiology
Neurons - metabolism
Symporters - metabolism
Topical Reviews
title Novel determinants of the neuronal Cl− concentration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20determinants%20of%20the%20neuronal%20Cl%E2%88%92%20concentration&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Delpire,%20Eric&rft.date=2014-10-01&rft.volume=592&rft.issue=19&rft.spage=4099&rft.epage=4114&rft.pages=4099-4114&rft.issn=0022-3751&rft.eissn=1469-7793&rft.coden=JPHYA7&rft_id=info:doi/10.1113/jphysiol.2014.275529&rft_dat=%3Cproquest_pubme%3E1625342806%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566612960&rft_id=info:pmid/25107928&rfr_iscdi=true