Novel determinants of the neuronal Cl− concentration
It is now a well‐accepted view that cation‐driven Cl− transporters in neurons are involved in determining the intracellular Cl− concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl− gradient across neuronal membranes...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 2014-10, Vol.592 (19), p.4099-4114 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4114 |
---|---|
container_issue | 19 |
container_start_page | 4099 |
container_title | The Journal of physiology |
container_volume | 592 |
creator | Delpire, Eric Staley, Kevin J. |
description | It is now a well‐accepted view that cation‐driven Cl− transporters in neurons are involved in determining the intracellular Cl− concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl− gradient across neuronal membranes. After briefly discussing the data supporting and opposing the role of cation–chloride cotransporters in regulating Cl−, we examine the participation of the following factors in the formation of the transmembrane Cl− gradient: (i) fixed ‘Donnan’ charges inside and outside the cell; (ii) the properties of water (free vs. bound); and (iii) water transport through the cotransporters. We demonstrate a steep relationship between intracellular Cl− and the concentration of fixed negative charges on macromolecules. We show that in the absence of water transport through the K+–Cl− cotransporter, a large osmotic gradient builds at concentrations below or above a set value of ‘Donnan’ charges, and show that at any value of these fixed charges, the reversal potential for Cl− equates that of K+. When the movement of water across the membrane is a source of free energy, it is sufficient to modify the movement of Cl− through the cotransporter. In this scenario, the reversal potential for Cl− does not closely follow that of K+. Furthermore, our simulations demonstrate that small differences in the availability of freely diffusible water between inside and outside the cell greatly affect the Cl− reversal potential, particularly when osmolar transmembrane gradients are minimized, for example by idiogenic osmoles. We also establish that the presence of extracellular charges has little effect on the chloride reversal potential, but greatly affects the effective inhibitory conductance for Cl−. In conclusion, our theoretical analysis of the presence of fixed anionic charges and water bound on macromolecules inside and outside the cell greatly impacts both Cl− gradient and Cl− conductance across neuronal membranes. |
doi_str_mv | 10.1113/jphysiol.2014.275529 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4215762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1625342806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5855-d76cc11b91fbe34e19b7d2bbd693fe53931af6494b03b385c0aca5024a8ecc643</originalsourceid><addsrcrecordid>eNqNkc1u1DAQxy0EokvhDRCKxIVLFo8_4wsSWlE-VAGHcrYcZ8Jm5bUXOynaN-DcR-RJSJW2Ak49zWF-89fM_Ah5DnQNAPz17rA9liGFNaMg1kxLycwDsgKhTK214Q_JilLGaq4lnJAnpewoBU6NeUxOmASqDWtWRH1OlxiqDkfM-yG6OJYq9dW4xSrilFN0odqE37-uKp-ixzhmNw4pPiWPehcKPrupp-Tb2buLzYf6_Mv7j5u357WXjZR1p5X3AK2BvkUuEEyrO9a2nTK8R8kNB9crYURLecsb6anzTlImXIPeK8FPyZsl9zC1e-yWBYI95GHv8tEmN9h_O3HY2u_p0goGUis2B7y6Ccjpx4RltPuheAzBRUxTsaCMMJqyht8DZZIL1lA1oy__Q3dpyvOvZkoqpYAZRWdKLJTPqZSM_d3eQO21Q3vr0F47tIvDeezF3zffDd1KmwGzAD-HgMd7hdqLT18VB8n_AI3VrQ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566612960</pqid></control><display><type>article</type><title>Novel determinants of the neuronal Cl− concentration</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Delpire, Eric ; Staley, Kevin J.</creator><creatorcontrib>Delpire, Eric ; Staley, Kevin J.</creatorcontrib><description>It is now a well‐accepted view that cation‐driven Cl− transporters in neurons are involved in determining the intracellular Cl− concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl− gradient across neuronal membranes. After briefly discussing the data supporting and opposing the role of cation–chloride cotransporters in regulating Cl−, we examine the participation of the following factors in the formation of the transmembrane Cl− gradient: (i) fixed ‘Donnan’ charges inside and outside the cell; (ii) the properties of water (free vs. bound); and (iii) water transport through the cotransporters. We demonstrate a steep relationship between intracellular Cl− and the concentration of fixed negative charges on macromolecules. We show that in the absence of water transport through the K+–Cl− cotransporter, a large osmotic gradient builds at concentrations below or above a set value of ‘Donnan’ charges, and show that at any value of these fixed charges, the reversal potential for Cl− equates that of K+. When the movement of water across the membrane is a source of free energy, it is sufficient to modify the movement of Cl− through the cotransporter. In this scenario, the reversal potential for Cl− does not closely follow that of K+. Furthermore, our simulations demonstrate that small differences in the availability of freely diffusible water between inside and outside the cell greatly affect the Cl− reversal potential, particularly when osmolar transmembrane gradients are minimized, for example by idiogenic osmoles. We also establish that the presence of extracellular charges has little effect on the chloride reversal potential, but greatly affects the effective inhibitory conductance for Cl−. In conclusion, our theoretical analysis of the presence of fixed anionic charges and water bound on macromolecules inside and outside the cell greatly impacts both Cl− gradient and Cl− conductance across neuronal membranes.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2014.275529</identifier><identifier>PMID: 25107928</identifier><identifier>CODEN: JPHYA7</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biological Transport ; Cell Membrane - metabolism ; Chlorides - metabolism ; K Cl- Cotransporters ; Membrane Potentials - physiology ; Neurons - metabolism ; Symporters - metabolism ; Topical Reviews</subject><ispartof>The Journal of physiology, 2014-10, Vol.592 (19), p.4099-4114</ispartof><rights>2014 The Authors. The Journal of Physiology © 2014 The Physiological Society</rights><rights>2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.</rights><rights>Journal compilation © 2014 The Physiological Society</rights><rights>2014 The Authors. The Journal of Physiology © 2014 The Physiological Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5855-d76cc11b91fbe34e19b7d2bbd693fe53931af6494b03b385c0aca5024a8ecc643</citedby><cites>FETCH-LOGICAL-c5855-d76cc11b91fbe34e19b7d2bbd693fe53931af6494b03b385c0aca5024a8ecc643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215762/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215762/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,45553,45554,46388,46812,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25107928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Delpire, Eric</creatorcontrib><creatorcontrib>Staley, Kevin J.</creatorcontrib><title>Novel determinants of the neuronal Cl− concentration</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>It is now a well‐accepted view that cation‐driven Cl− transporters in neurons are involved in determining the intracellular Cl− concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl− gradient across neuronal membranes. After briefly discussing the data supporting and opposing the role of cation–chloride cotransporters in regulating Cl−, we examine the participation of the following factors in the formation of the transmembrane Cl− gradient: (i) fixed ‘Donnan’ charges inside and outside the cell; (ii) the properties of water (free vs. bound); and (iii) water transport through the cotransporters. We demonstrate a steep relationship between intracellular Cl− and the concentration of fixed negative charges on macromolecules. We show that in the absence of water transport through the K+–Cl− cotransporter, a large osmotic gradient builds at concentrations below or above a set value of ‘Donnan’ charges, and show that at any value of these fixed charges, the reversal potential for Cl− equates that of K+. When the movement of water across the membrane is a source of free energy, it is sufficient to modify the movement of Cl− through the cotransporter. In this scenario, the reversal potential for Cl− does not closely follow that of K+. Furthermore, our simulations demonstrate that small differences in the availability of freely diffusible water between inside and outside the cell greatly affect the Cl− reversal potential, particularly when osmolar transmembrane gradients are minimized, for example by idiogenic osmoles. We also establish that the presence of extracellular charges has little effect on the chloride reversal potential, but greatly affects the effective inhibitory conductance for Cl−. In conclusion, our theoretical analysis of the presence of fixed anionic charges and water bound on macromolecules inside and outside the cell greatly impacts both Cl− gradient and Cl− conductance across neuronal membranes.</description><subject>Animals</subject><subject>Biological Transport</subject><subject>Cell Membrane - metabolism</subject><subject>Chlorides - metabolism</subject><subject>K Cl- Cotransporters</subject><subject>Membrane Potentials - physiology</subject><subject>Neurons - metabolism</subject><subject>Symporters - metabolism</subject><subject>Topical Reviews</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAQxy0EokvhDRCKxIVLFo8_4wsSWlE-VAGHcrYcZ8Jm5bUXOynaN-DcR-RJSJW2Ak49zWF-89fM_Ah5DnQNAPz17rA9liGFNaMg1kxLycwDsgKhTK214Q_JilLGaq4lnJAnpewoBU6NeUxOmASqDWtWRH1OlxiqDkfM-yG6OJYq9dW4xSrilFN0odqE37-uKp-ixzhmNw4pPiWPehcKPrupp-Tb2buLzYf6_Mv7j5u357WXjZR1p5X3AK2BvkUuEEyrO9a2nTK8R8kNB9crYURLecsb6anzTlImXIPeK8FPyZsl9zC1e-yWBYI95GHv8tEmN9h_O3HY2u_p0goGUis2B7y6Ccjpx4RltPuheAzBRUxTsaCMMJqyht8DZZIL1lA1oy__Q3dpyvOvZkoqpYAZRWdKLJTPqZSM_d3eQO21Q3vr0F47tIvDeezF3zffDd1KmwGzAD-HgMd7hdqLT18VB8n_AI3VrQ4</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Delpire, Eric</creator><creator>Staley, Kevin J.</creator><general>Wiley Subscription Services, Inc</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141001</creationdate><title>Novel determinants of the neuronal Cl− concentration</title><author>Delpire, Eric ; Staley, Kevin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5855-d76cc11b91fbe34e19b7d2bbd693fe53931af6494b03b385c0aca5024a8ecc643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological Transport</topic><topic>Cell Membrane - metabolism</topic><topic>Chlorides - metabolism</topic><topic>K Cl- Cotransporters</topic><topic>Membrane Potentials - physiology</topic><topic>Neurons - metabolism</topic><topic>Symporters - metabolism</topic><topic>Topical Reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delpire, Eric</creatorcontrib><creatorcontrib>Staley, Kevin J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delpire, Eric</au><au>Staley, Kevin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel determinants of the neuronal Cl− concentration</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>592</volume><issue>19</issue><spage>4099</spage><epage>4114</epage><pages>4099-4114</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><coden>JPHYA7</coden><abstract>It is now a well‐accepted view that cation‐driven Cl− transporters in neurons are involved in determining the intracellular Cl− concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl− gradient across neuronal membranes. After briefly discussing the data supporting and opposing the role of cation–chloride cotransporters in regulating Cl−, we examine the participation of the following factors in the formation of the transmembrane Cl− gradient: (i) fixed ‘Donnan’ charges inside and outside the cell; (ii) the properties of water (free vs. bound); and (iii) water transport through the cotransporters. We demonstrate a steep relationship between intracellular Cl− and the concentration of fixed negative charges on macromolecules. We show that in the absence of water transport through the K+–Cl− cotransporter, a large osmotic gradient builds at concentrations below or above a set value of ‘Donnan’ charges, and show that at any value of these fixed charges, the reversal potential for Cl− equates that of K+. When the movement of water across the membrane is a source of free energy, it is sufficient to modify the movement of Cl− through the cotransporter. In this scenario, the reversal potential for Cl− does not closely follow that of K+. Furthermore, our simulations demonstrate that small differences in the availability of freely diffusible water between inside and outside the cell greatly affect the Cl− reversal potential, particularly when osmolar transmembrane gradients are minimized, for example by idiogenic osmoles. We also establish that the presence of extracellular charges has little effect on the chloride reversal potential, but greatly affects the effective inhibitory conductance for Cl−. In conclusion, our theoretical analysis of the presence of fixed anionic charges and water bound on macromolecules inside and outside the cell greatly impacts both Cl− gradient and Cl− conductance across neuronal membranes.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>25107928</pmid><doi>10.1113/jphysiol.2014.275529</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3751 |
ispartof | The Journal of physiology, 2014-10, Vol.592 (19), p.4099-4114 |
issn | 0022-3751 1469-7793 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4215762 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Biological Transport Cell Membrane - metabolism Chlorides - metabolism K Cl- Cotransporters Membrane Potentials - physiology Neurons - metabolism Symporters - metabolism Topical Reviews |
title | Novel determinants of the neuronal Cl− concentration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20determinants%20of%20the%20neuronal%20Cl%E2%88%92%20concentration&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Delpire,%20Eric&rft.date=2014-10-01&rft.volume=592&rft.issue=19&rft.spage=4099&rft.epage=4114&rft.pages=4099-4114&rft.issn=0022-3751&rft.eissn=1469-7793&rft.coden=JPHYA7&rft_id=info:doi/10.1113/jphysiol.2014.275529&rft_dat=%3Cproquest_pubme%3E1625342806%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566612960&rft_id=info:pmid/25107928&rfr_iscdi=true |