Kinetics of hyperosmotically stimulated Na-K-2Cl cotransporter in Xenopus laevis oocytes
A detailed study of hypertonically stimulated Na-K-2Cl cotransport (NKCC1) in Xenopus laevis oocytes was carried out to better understand the 1 K(+):1 Cl(-) stoichiometry of transport that was previously observed. In this study, we derived the velocity equations for K(+) influx under both rapid equi...
Gespeichert in:
Veröffentlicht in: | American Journal of Physiology: Cell Physiology 2011-11, Vol.301 (5), p.C1074-C1085 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | C1085 |
---|---|
container_issue | 5 |
container_start_page | C1074 |
container_title | American Journal of Physiology: Cell Physiology |
container_volume | 301 |
creator | Delpire, Eric Gagnon, Kenneth B |
description | A detailed study of hypertonically stimulated Na-K-2Cl cotransport (NKCC1) in Xenopus laevis oocytes was carried out to better understand the 1 K(+):1 Cl(-) stoichiometry of transport that was previously observed. In this study, we derived the velocity equations for K(+) influx under both rapid equilibrium assumptions and combined equilibrium and steady-state assumptions and demonstrate that the behavior of the equations and curves in Lineweaver-Burke plots are consistent with a model where Cl(-) binds first, followed by Na(+), a second Cl(-), and then K(+). We further demonstrate that stimulation of K(+) movement by K(+) on the trans side is an intrinsic property of a carrier that transports multiple substrates. We also demonstrate that K(+) movement through NKCC1 is strictly dependent upon the presence of external Na(+), even though only a fraction of Na(+) is in fact transported. Finally, we propose that the larger transport of K(+), as compared with Na(+), is a result of the return of partially unloaded carriers, which masks the net 1Na(+):1K(+):2Cl(-) stoichiometry of NKCC1. These data have profound implications for the physiology of Na-K-2Cl cotransport, since transport of K-Cl in some conditions seems to be uncoupled from the transport of Na-Cl. |
doi_str_mv | 10.1152/ajpcell.00131.2011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4214853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497695701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-a0f2e59705c510725ef4204ac2b271e3b6ad7a5ef3dacd768c5e266d20e7cca73</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS1ERbeFL8ABRVw4ZTvjP_HuBQmtCkWtygWk3iyvM6FeOXGwk0r77fHSpYKeRpr5zdPMe4y9RVgiKn5hd6OjEJYAKHDJAfEFW5QBr1E14iVbgGhE3aAUp-ws5x0ASN6sX7FTjlorDWLB7q79QJN3uYpddb8fKcXcx9KwIeyrPPl-Dnaitrq19XXNN6FycUp2yGNME6XKD9UdDXGccxUsPfiiE91-ovyanXQ2ZHpzrOfsx-fL75ur-ubbl6-bTze1k3w11RY6TmqtQTmFoLmiTnKQ1vEt10hi29hW29IVrXWtblZOEW-algNp56wW5-zjo-44b3tqHQ3lvGDG5Hub9iZab_6fDP7e_IwPRnKUKyWKwIejQIq_ZsqT6X0--GoHinM2a8BisFxhId8_I3dxTkP5rkCwRi2FLBB_hFxxMifqnk5BMIfYzDE28yc2c4itLL3794mnlb85id9vgpca</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900917434</pqid></control><display><type>article</type><title>Kinetics of hyperosmotically stimulated Na-K-2Cl cotransporter in Xenopus laevis oocytes</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Delpire, Eric ; Gagnon, Kenneth B</creator><creatorcontrib>Delpire, Eric ; Gagnon, Kenneth B</creatorcontrib><description>A detailed study of hypertonically stimulated Na-K-2Cl cotransport (NKCC1) in Xenopus laevis oocytes was carried out to better understand the 1 K(+):1 Cl(-) stoichiometry of transport that was previously observed. In this study, we derived the velocity equations for K(+) influx under both rapid equilibrium assumptions and combined equilibrium and steady-state assumptions and demonstrate that the behavior of the equations and curves in Lineweaver-Burke plots are consistent with a model where Cl(-) binds first, followed by Na(+), a second Cl(-), and then K(+). We further demonstrate that stimulation of K(+) movement by K(+) on the trans side is an intrinsic property of a carrier that transports multiple substrates. We also demonstrate that K(+) movement through NKCC1 is strictly dependent upon the presence of external Na(+), even though only a fraction of Na(+) is in fact transported. Finally, we propose that the larger transport of K(+), as compared with Na(+), is a result of the return of partially unloaded carriers, which masks the net 1Na(+):1K(+):2Cl(-) stoichiometry of NKCC1. These data have profound implications for the physiology of Na-K-2Cl cotransport, since transport of K-Cl in some conditions seems to be uncoupled from the transport of Na-Cl.</description><identifier>ISSN: 0363-6143</identifier><identifier>EISSN: 1522-1563</identifier><identifier>DOI: 10.1152/ajpcell.00131.2011</identifier><identifier>PMID: 21775703</identifier><identifier>CODEN: AJPCDD</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Binding sites ; Cells ; Chlorides - metabolism ; Female ; Frogs ; Membrane Transporters, Ion Channels and Pumps ; Mice ; Oocytes - metabolism ; Osmolar Concentration ; Potassium ; Potassium - metabolism ; Protein Binding ; Sodium ; Sodium - metabolism ; Sodium-Potassium-Chloride Symporters - metabolism ; Solute Carrier Family 12, Member 2 ; Xenopus laevis</subject><ispartof>American Journal of Physiology: Cell Physiology, 2011-11, Vol.301 (5), p.C1074-C1085</ispartof><rights>Copyright American Physiological Society Nov 2011</rights><rights>Copyright © 2011 the American Physiological Society 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-a0f2e59705c510725ef4204ac2b271e3b6ad7a5ef3dacd768c5e266d20e7cca73</citedby><cites>FETCH-LOGICAL-c428t-a0f2e59705c510725ef4204ac2b271e3b6ad7a5ef3dacd768c5e266d20e7cca73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21775703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Delpire, Eric</creatorcontrib><creatorcontrib>Gagnon, Kenneth B</creatorcontrib><title>Kinetics of hyperosmotically stimulated Na-K-2Cl cotransporter in Xenopus laevis oocytes</title><title>American Journal of Physiology: Cell Physiology</title><addtitle>Am J Physiol Cell Physiol</addtitle><description>A detailed study of hypertonically stimulated Na-K-2Cl cotransport (NKCC1) in Xenopus laevis oocytes was carried out to better understand the 1 K(+):1 Cl(-) stoichiometry of transport that was previously observed. In this study, we derived the velocity equations for K(+) influx under both rapid equilibrium assumptions and combined equilibrium and steady-state assumptions and demonstrate that the behavior of the equations and curves in Lineweaver-Burke plots are consistent with a model where Cl(-) binds first, followed by Na(+), a second Cl(-), and then K(+). We further demonstrate that stimulation of K(+) movement by K(+) on the trans side is an intrinsic property of a carrier that transports multiple substrates. We also demonstrate that K(+) movement through NKCC1 is strictly dependent upon the presence of external Na(+), even though only a fraction of Na(+) is in fact transported. Finally, we propose that the larger transport of K(+), as compared with Na(+), is a result of the return of partially unloaded carriers, which masks the net 1Na(+):1K(+):2Cl(-) stoichiometry of NKCC1. These data have profound implications for the physiology of Na-K-2Cl cotransport, since transport of K-Cl in some conditions seems to be uncoupled from the transport of Na-Cl.</description><subject>Animals</subject><subject>Binding sites</subject><subject>Cells</subject><subject>Chlorides - metabolism</subject><subject>Female</subject><subject>Frogs</subject><subject>Membrane Transporters, Ion Channels and Pumps</subject><subject>Mice</subject><subject>Oocytes - metabolism</subject><subject>Osmolar Concentration</subject><subject>Potassium</subject><subject>Potassium - metabolism</subject><subject>Protein Binding</subject><subject>Sodium</subject><subject>Sodium - metabolism</subject><subject>Sodium-Potassium-Chloride Symporters - metabolism</subject><subject>Solute Carrier Family 12, Member 2</subject><subject>Xenopus laevis</subject><issn>0363-6143</issn><issn>1522-1563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxS1ERbeFL8ABRVw4ZTvjP_HuBQmtCkWtygWk3iyvM6FeOXGwk0r77fHSpYKeRpr5zdPMe4y9RVgiKn5hd6OjEJYAKHDJAfEFW5QBr1E14iVbgGhE3aAUp-ws5x0ASN6sX7FTjlorDWLB7q79QJN3uYpddb8fKcXcx9KwIeyrPPl-Dnaitrq19XXNN6FycUp2yGNME6XKD9UdDXGccxUsPfiiE91-ovyanXQ2ZHpzrOfsx-fL75ur-ubbl6-bTze1k3w11RY6TmqtQTmFoLmiTnKQ1vEt10hi29hW29IVrXWtblZOEW-algNp56wW5-zjo-44b3tqHQ3lvGDG5Hub9iZab_6fDP7e_IwPRnKUKyWKwIejQIq_ZsqT6X0--GoHinM2a8BisFxhId8_I3dxTkP5rkCwRi2FLBB_hFxxMifqnk5BMIfYzDE28yc2c4itLL3794mnlb85id9vgpca</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Delpire, Eric</creator><creator>Gagnon, Kenneth B</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111101</creationdate><title>Kinetics of hyperosmotically stimulated Na-K-2Cl cotransporter in Xenopus laevis oocytes</title><author>Delpire, Eric ; Gagnon, Kenneth B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-a0f2e59705c510725ef4204ac2b271e3b6ad7a5ef3dacd768c5e266d20e7cca73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Binding sites</topic><topic>Cells</topic><topic>Chlorides - metabolism</topic><topic>Female</topic><topic>Frogs</topic><topic>Membrane Transporters, Ion Channels and Pumps</topic><topic>Mice</topic><topic>Oocytes - metabolism</topic><topic>Osmolar Concentration</topic><topic>Potassium</topic><topic>Potassium - metabolism</topic><topic>Protein Binding</topic><topic>Sodium</topic><topic>Sodium - metabolism</topic><topic>Sodium-Potassium-Chloride Symporters - metabolism</topic><topic>Solute Carrier Family 12, Member 2</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delpire, Eric</creatorcontrib><creatorcontrib>Gagnon, Kenneth B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American Journal of Physiology: Cell Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delpire, Eric</au><au>Gagnon, Kenneth B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of hyperosmotically stimulated Na-K-2Cl cotransporter in Xenopus laevis oocytes</atitle><jtitle>American Journal of Physiology: Cell Physiology</jtitle><addtitle>Am J Physiol Cell Physiol</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>301</volume><issue>5</issue><spage>C1074</spage><epage>C1085</epage><pages>C1074-C1085</pages><issn>0363-6143</issn><eissn>1522-1563</eissn><coden>AJPCDD</coden><abstract>A detailed study of hypertonically stimulated Na-K-2Cl cotransport (NKCC1) in Xenopus laevis oocytes was carried out to better understand the 1 K(+):1 Cl(-) stoichiometry of transport that was previously observed. In this study, we derived the velocity equations for K(+) influx under both rapid equilibrium assumptions and combined equilibrium and steady-state assumptions and demonstrate that the behavior of the equations and curves in Lineweaver-Burke plots are consistent with a model where Cl(-) binds first, followed by Na(+), a second Cl(-), and then K(+). We further demonstrate that stimulation of K(+) movement by K(+) on the trans side is an intrinsic property of a carrier that transports multiple substrates. We also demonstrate that K(+) movement through NKCC1 is strictly dependent upon the presence of external Na(+), even though only a fraction of Na(+) is in fact transported. Finally, we propose that the larger transport of K(+), as compared with Na(+), is a result of the return of partially unloaded carriers, which masks the net 1Na(+):1K(+):2Cl(-) stoichiometry of NKCC1. These data have profound implications for the physiology of Na-K-2Cl cotransport, since transport of K-Cl in some conditions seems to be uncoupled from the transport of Na-Cl.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>21775703</pmid><doi>10.1152/ajpcell.00131.2011</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-6143 |
ispartof | American Journal of Physiology: Cell Physiology, 2011-11, Vol.301 (5), p.C1074-C1085 |
issn | 0363-6143 1522-1563 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4214853 |
source | MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals Binding sites Cells Chlorides - metabolism Female Frogs Membrane Transporters, Ion Channels and Pumps Mice Oocytes - metabolism Osmolar Concentration Potassium Potassium - metabolism Protein Binding Sodium Sodium - metabolism Sodium-Potassium-Chloride Symporters - metabolism Solute Carrier Family 12, Member 2 Xenopus laevis |
title | Kinetics of hyperosmotically stimulated Na-K-2Cl cotransporter in Xenopus laevis oocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20hyperosmotically%20stimulated%20Na-K-2Cl%20cotransporter%20in%20Xenopus%20laevis%20oocytes&rft.jtitle=American%20Journal%20of%20Physiology:%20Cell%20Physiology&rft.au=Delpire,%20Eric&rft.date=2011-11-01&rft.volume=301&rft.issue=5&rft.spage=C1074&rft.epage=C1085&rft.pages=C1074-C1085&rft.issn=0363-6143&rft.eissn=1522-1563&rft.coden=AJPCDD&rft_id=info:doi/10.1152/ajpcell.00131.2011&rft_dat=%3Cproquest_pubme%3E2497695701%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900917434&rft_id=info:pmid/21775703&rfr_iscdi=true |