Hormones and diet, but not body weight, control hypothalamic microglial activity
The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory proc...
Gespeichert in:
Veröffentlicht in: | Glia 2014-01, Vol.62 (1), p.17-25 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | Glia |
container_volume | 62 |
creator | Gao, Yuanqing Ottaway, Nickki Schriever, Sonja C. Legutko, Beata García-Cáceres, Cristina de la Fuente, Esther Mergen, Clarita Bour, Susanne Thaler, Joshua P. Seeley, Randy J. Filosa, Jessica Stern, Javier E. Perez-Tilve, Diego Schwartz, Michael W. Tschöp, Matthias H. Yi, Chun-Xia |
description | The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild‐type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin‐receptor mutation), and Type‐4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1‐ir), cluster of differentiation 68 (CD68‐ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1‐ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1‐ir comparable with WT mice but had significantly lower CD68‐ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1‐ir, and db/db mice showed increase of CD68‐ir. Obese MC4R KO mice fed a SC diet had comparable iba1‐ir and CD68‐ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon‐like peptide‐1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17–25 |
doi_str_mv | 10.1002/glia.22580 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4213950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134853911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4860-33c6f36257d24796a96ff06a43c32c02e8476b95e0b07501aef273d1109735e73</originalsourceid><addsrcrecordid>eNp9kElv2zAQhYmiReMsl_6AgkBvRZQMF5HSpUCaxQ7iLIckBXohKImymcqiQ9FJ9O9D17HRXHogCA6_eTPvIfSFwAEBoIeTxuoDStMMPqABgTxLCGHiIxpAlvOE8Jxsoe2uewAg8SE_oy3KiRBSpAN0M3J-5lrTYd1WuLIm7ONiEXDrAi5c1eNnYyfTWCxdG7xr8LSfuzDVjZ7ZEsfj3XJ8g3UZ7JMN_S76VOumM3tv9w66Ozu9PR4l4-vh-fHROCl5JiBhrBQ1EzSVFeUyFzoXdQ1Cc1YyWgI1GZeiyFMDBcgUiDY1lawi0Z5kqZFsB_1Y6c4XxcxUpYnr6UbNvZ1p3yunrXr_09qpmrgnxSlheQpR4NubgHePC9MF9eAWvo07K8IFZACM0kh9X1HRaNd5U28mEFDL9NXSvvqbfoS__rvTBl3HHQGyAp5tY_r_SKnh-PxoLZqsemwXzMumR_s_SkgmU_XraqhO6CVjv39eqHv2CjFinn0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1460800322</pqid></control><display><type>article</type><title>Hormones and diet, but not body weight, control hypothalamic microglial activity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gao, Yuanqing ; Ottaway, Nickki ; Schriever, Sonja C. ; Legutko, Beata ; García-Cáceres, Cristina ; de la Fuente, Esther ; Mergen, Clarita ; Bour, Susanne ; Thaler, Joshua P. ; Seeley, Randy J. ; Filosa, Jessica ; Stern, Javier E. ; Perez-Tilve, Diego ; Schwartz, Michael W. ; Tschöp, Matthias H. ; Yi, Chun-Xia</creator><creatorcontrib>Gao, Yuanqing ; Ottaway, Nickki ; Schriever, Sonja C. ; Legutko, Beata ; García-Cáceres, Cristina ; de la Fuente, Esther ; Mergen, Clarita ; Bour, Susanne ; Thaler, Joshua P. ; Seeley, Randy J. ; Filosa, Jessica ; Stern, Javier E. ; Perez-Tilve, Diego ; Schwartz, Michael W. ; Tschöp, Matthias H. ; Yi, Chun-Xia</creatorcontrib><description>The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild‐type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin‐receptor mutation), and Type‐4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1‐ir), cluster of differentiation 68 (CD68‐ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1‐ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1‐ir comparable with WT mice but had significantly lower CD68‐ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1‐ir, and db/db mice showed increase of CD68‐ir. Obese MC4R KO mice fed a SC diet had comparable iba1‐ir and CD68‐ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon‐like peptide‐1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17–25</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.22580</identifier><identifier>PMID: 24166765</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; Antigens, CD - metabolism ; Antigens, Differentiation, Myelomonocytic - metabolism ; Body Weight - drug effects ; Body Weight - physiology ; Cytokinins - metabolism ; Diet, High-Fat - adverse effects ; Disease Models, Animal ; high calorie diet ; Hormones ; Hormones - pharmacology ; leptin ; Leptin - deficiency ; Leptin - pharmacology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microglia - drug effects ; Microglia - metabolism ; Obesity ; Obesity - chemically induced ; Obesity - physiopathology ; Peptides - pharmacology ; Receptor, Melanocortin, Type 4 - deficiency ; Receptors, Interleukin-8A - genetics ; Receptors, Interleukin-8A - metabolism ; Receptors, Leptin - deficiency ; Receptors, Leptin - genetics ; Rodents ; Signal Transduction - drug effects ; Supraoptic Nucleus - cytology ; Venoms - pharmacology</subject><ispartof>Glia, 2014-01, Vol.62 (1), p.17-25</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><rights>2013 Wiley Periodicals, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4860-33c6f36257d24796a96ff06a43c32c02e8476b95e0b07501aef273d1109735e73</citedby><cites>FETCH-LOGICAL-c4860-33c6f36257d24796a96ff06a43c32c02e8476b95e0b07501aef273d1109735e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.22580$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.22580$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24166765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Yuanqing</creatorcontrib><creatorcontrib>Ottaway, Nickki</creatorcontrib><creatorcontrib>Schriever, Sonja C.</creatorcontrib><creatorcontrib>Legutko, Beata</creatorcontrib><creatorcontrib>García-Cáceres, Cristina</creatorcontrib><creatorcontrib>de la Fuente, Esther</creatorcontrib><creatorcontrib>Mergen, Clarita</creatorcontrib><creatorcontrib>Bour, Susanne</creatorcontrib><creatorcontrib>Thaler, Joshua P.</creatorcontrib><creatorcontrib>Seeley, Randy J.</creatorcontrib><creatorcontrib>Filosa, Jessica</creatorcontrib><creatorcontrib>Stern, Javier E.</creatorcontrib><creatorcontrib>Perez-Tilve, Diego</creatorcontrib><creatorcontrib>Schwartz, Michael W.</creatorcontrib><creatorcontrib>Tschöp, Matthias H.</creatorcontrib><creatorcontrib>Yi, Chun-Xia</creatorcontrib><title>Hormones and diet, but not body weight, control hypothalamic microglial activity</title><title>Glia</title><addtitle>Glia</addtitle><description>The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild‐type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin‐receptor mutation), and Type‐4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1‐ir), cluster of differentiation 68 (CD68‐ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1‐ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1‐ir comparable with WT mice but had significantly lower CD68‐ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1‐ir, and db/db mice showed increase of CD68‐ir. Obese MC4R KO mice fed a SC diet had comparable iba1‐ir and CD68‐ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon‐like peptide‐1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17–25</description><subject>Animals</subject><subject>Antigens, CD - metabolism</subject><subject>Antigens, Differentiation, Myelomonocytic - metabolism</subject><subject>Body Weight - drug effects</subject><subject>Body Weight - physiology</subject><subject>Cytokinins - metabolism</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Disease Models, Animal</subject><subject>high calorie diet</subject><subject>Hormones</subject><subject>Hormones - pharmacology</subject><subject>leptin</subject><subject>Leptin - deficiency</subject><subject>Leptin - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microglia - drug effects</subject><subject>Microglia - metabolism</subject><subject>Obesity</subject><subject>Obesity - chemically induced</subject><subject>Obesity - physiopathology</subject><subject>Peptides - pharmacology</subject><subject>Receptor, Melanocortin, Type 4 - deficiency</subject><subject>Receptors, Interleukin-8A - genetics</subject><subject>Receptors, Interleukin-8A - metabolism</subject><subject>Receptors, Leptin - deficiency</subject><subject>Receptors, Leptin - genetics</subject><subject>Rodents</subject><subject>Signal Transduction - drug effects</subject><subject>Supraoptic Nucleus - cytology</subject><subject>Venoms - pharmacology</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kElv2zAQhYmiReMsl_6AgkBvRZQMF5HSpUCaxQ7iLIckBXohKImymcqiQ9FJ9O9D17HRXHogCA6_eTPvIfSFwAEBoIeTxuoDStMMPqABgTxLCGHiIxpAlvOE8Jxsoe2uewAg8SE_oy3KiRBSpAN0M3J-5lrTYd1WuLIm7ONiEXDrAi5c1eNnYyfTWCxdG7xr8LSfuzDVjZ7ZEsfj3XJ8g3UZ7JMN_S76VOumM3tv9w66Ozu9PR4l4-vh-fHROCl5JiBhrBQ1EzSVFeUyFzoXdQ1Cc1YyWgI1GZeiyFMDBcgUiDY1lawi0Z5kqZFsB_1Y6c4XxcxUpYnr6UbNvZ1p3yunrXr_09qpmrgnxSlheQpR4NubgHePC9MF9eAWvo07K8IFZACM0kh9X1HRaNd5U28mEFDL9NXSvvqbfoS__rvTBl3HHQGyAp5tY_r_SKnh-PxoLZqsemwXzMumR_s_SkgmU_XraqhO6CVjv39eqHv2CjFinn0</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Gao, Yuanqing</creator><creator>Ottaway, Nickki</creator><creator>Schriever, Sonja C.</creator><creator>Legutko, Beata</creator><creator>García-Cáceres, Cristina</creator><creator>de la Fuente, Esther</creator><creator>Mergen, Clarita</creator><creator>Bour, Susanne</creator><creator>Thaler, Joshua P.</creator><creator>Seeley, Randy J.</creator><creator>Filosa, Jessica</creator><creator>Stern, Javier E.</creator><creator>Perez-Tilve, Diego</creator><creator>Schwartz, Michael W.</creator><creator>Tschöp, Matthias H.</creator><creator>Yi, Chun-Xia</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201401</creationdate><title>Hormones and diet, but not body weight, control hypothalamic microglial activity</title><author>Gao, Yuanqing ; Ottaway, Nickki ; Schriever, Sonja C. ; Legutko, Beata ; García-Cáceres, Cristina ; de la Fuente, Esther ; Mergen, Clarita ; Bour, Susanne ; Thaler, Joshua P. ; Seeley, Randy J. ; Filosa, Jessica ; Stern, Javier E. ; Perez-Tilve, Diego ; Schwartz, Michael W. ; Tschöp, Matthias H. ; Yi, Chun-Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4860-33c6f36257d24796a96ff06a43c32c02e8476b95e0b07501aef273d1109735e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Antigens, CD - metabolism</topic><topic>Antigens, Differentiation, Myelomonocytic - metabolism</topic><topic>Body Weight - drug effects</topic><topic>Body Weight - physiology</topic><topic>Cytokinins - metabolism</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Disease Models, Animal</topic><topic>high calorie diet</topic><topic>Hormones</topic><topic>Hormones - pharmacology</topic><topic>leptin</topic><topic>Leptin - deficiency</topic><topic>Leptin - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microglia - drug effects</topic><topic>Microglia - metabolism</topic><topic>Obesity</topic><topic>Obesity - chemically induced</topic><topic>Obesity - physiopathology</topic><topic>Peptides - pharmacology</topic><topic>Receptor, Melanocortin, Type 4 - deficiency</topic><topic>Receptors, Interleukin-8A - genetics</topic><topic>Receptors, Interleukin-8A - metabolism</topic><topic>Receptors, Leptin - deficiency</topic><topic>Receptors, Leptin - genetics</topic><topic>Rodents</topic><topic>Signal Transduction - drug effects</topic><topic>Supraoptic Nucleus - cytology</topic><topic>Venoms - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yuanqing</creatorcontrib><creatorcontrib>Ottaway, Nickki</creatorcontrib><creatorcontrib>Schriever, Sonja C.</creatorcontrib><creatorcontrib>Legutko, Beata</creatorcontrib><creatorcontrib>García-Cáceres, Cristina</creatorcontrib><creatorcontrib>de la Fuente, Esther</creatorcontrib><creatorcontrib>Mergen, Clarita</creatorcontrib><creatorcontrib>Bour, Susanne</creatorcontrib><creatorcontrib>Thaler, Joshua P.</creatorcontrib><creatorcontrib>Seeley, Randy J.</creatorcontrib><creatorcontrib>Filosa, Jessica</creatorcontrib><creatorcontrib>Stern, Javier E.</creatorcontrib><creatorcontrib>Perez-Tilve, Diego</creatorcontrib><creatorcontrib>Schwartz, Michael W.</creatorcontrib><creatorcontrib>Tschöp, Matthias H.</creatorcontrib><creatorcontrib>Yi, Chun-Xia</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yuanqing</au><au>Ottaway, Nickki</au><au>Schriever, Sonja C.</au><au>Legutko, Beata</au><au>García-Cáceres, Cristina</au><au>de la Fuente, Esther</au><au>Mergen, Clarita</au><au>Bour, Susanne</au><au>Thaler, Joshua P.</au><au>Seeley, Randy J.</au><au>Filosa, Jessica</au><au>Stern, Javier E.</au><au>Perez-Tilve, Diego</au><au>Schwartz, Michael W.</au><au>Tschöp, Matthias H.</au><au>Yi, Chun-Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hormones and diet, but not body weight, control hypothalamic microglial activity</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2014-01</date><risdate>2014</risdate><volume>62</volume><issue>1</issue><spage>17</spage><epage>25</epage><pages>17-25</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild‐type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin‐receptor mutation), and Type‐4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1‐ir), cluster of differentiation 68 (CD68‐ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1‐ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1‐ir comparable with WT mice but had significantly lower CD68‐ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1‐ir, and db/db mice showed increase of CD68‐ir. Obese MC4R KO mice fed a SC diet had comparable iba1‐ir and CD68‐ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon‐like peptide‐1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17–25</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24166765</pmid><doi>10.1002/glia.22580</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2014-01, Vol.62 (1), p.17-25 |
issn | 0894-1491 1098-1136 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4213950 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Antigens, CD - metabolism Antigens, Differentiation, Myelomonocytic - metabolism Body Weight - drug effects Body Weight - physiology Cytokinins - metabolism Diet, High-Fat - adverse effects Disease Models, Animal high calorie diet Hormones Hormones - pharmacology leptin Leptin - deficiency Leptin - pharmacology Mice Mice, Inbred C57BL Mice, Transgenic Microglia - drug effects Microglia - metabolism Obesity Obesity - chemically induced Obesity - physiopathology Peptides - pharmacology Receptor, Melanocortin, Type 4 - deficiency Receptors, Interleukin-8A - genetics Receptors, Interleukin-8A - metabolism Receptors, Leptin - deficiency Receptors, Leptin - genetics Rodents Signal Transduction - drug effects Supraoptic Nucleus - cytology Venoms - pharmacology |
title | Hormones and diet, but not body weight, control hypothalamic microglial activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hormones%20and%20diet,%20but%20not%20body%20weight,%20control%20hypothalamic%20microglial%20activity&rft.jtitle=Glia&rft.au=Gao,%20Yuanqing&rft.date=2014-01&rft.volume=62&rft.issue=1&rft.spage=17&rft.epage=25&rft.pages=17-25&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.22580&rft_dat=%3Cproquest_pubme%3E3134853911%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1460800322&rft_id=info:pmid/24166765&rfr_iscdi=true |