Hormones and diet, but not body weight, control hypothalamic microglial activity

The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia 2014-01, Vol.62 (1), p.17-25
Hauptverfasser: Gao, Yuanqing, Ottaway, Nickki, Schriever, Sonja C., Legutko, Beata, García-Cáceres, Cristina, de la Fuente, Esther, Mergen, Clarita, Bour, Susanne, Thaler, Joshua P., Seeley, Randy J., Filosa, Jessica, Stern, Javier E., Perez-Tilve, Diego, Schwartz, Michael W., Tschöp, Matthias H., Yi, Chun-Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 1
container_start_page 17
container_title Glia
container_volume 62
creator Gao, Yuanqing
Ottaway, Nickki
Schriever, Sonja C.
Legutko, Beata
García-Cáceres, Cristina
de la Fuente, Esther
Mergen, Clarita
Bour, Susanne
Thaler, Joshua P.
Seeley, Randy J.
Filosa, Jessica
Stern, Javier E.
Perez-Tilve, Diego
Schwartz, Michael W.
Tschöp, Matthias H.
Yi, Chun-Xia
description The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild‐type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin‐receptor mutation), and Type‐4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1‐ir), cluster of differentiation 68 (CD68‐ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1‐ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1‐ir comparable with WT mice but had significantly lower CD68‐ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1‐ir, and db/db mice showed increase of CD68‐ir. Obese MC4R KO mice fed a SC diet had comparable iba1‐ir and CD68‐ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon‐like peptide‐1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17–25
doi_str_mv 10.1002/glia.22580
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4213950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134853911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4860-33c6f36257d24796a96ff06a43c32c02e8476b95e0b07501aef273d1109735e73</originalsourceid><addsrcrecordid>eNp9kElv2zAQhYmiReMsl_6AgkBvRZQMF5HSpUCaxQ7iLIckBXohKImymcqiQ9FJ9O9D17HRXHogCA6_eTPvIfSFwAEBoIeTxuoDStMMPqABgTxLCGHiIxpAlvOE8Jxsoe2uewAg8SE_oy3KiRBSpAN0M3J-5lrTYd1WuLIm7ONiEXDrAi5c1eNnYyfTWCxdG7xr8LSfuzDVjZ7ZEsfj3XJ8g3UZ7JMN_S76VOumM3tv9w66Ozu9PR4l4-vh-fHROCl5JiBhrBQ1EzSVFeUyFzoXdQ1Cc1YyWgI1GZeiyFMDBcgUiDY1lawi0Z5kqZFsB_1Y6c4XxcxUpYnr6UbNvZ1p3yunrXr_09qpmrgnxSlheQpR4NubgHePC9MF9eAWvo07K8IFZACM0kh9X1HRaNd5U28mEFDL9NXSvvqbfoS__rvTBl3HHQGyAp5tY_r_SKnh-PxoLZqsemwXzMumR_s_SkgmU_XraqhO6CVjv39eqHv2CjFinn0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1460800322</pqid></control><display><type>article</type><title>Hormones and diet, but not body weight, control hypothalamic microglial activity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gao, Yuanqing ; Ottaway, Nickki ; Schriever, Sonja C. ; Legutko, Beata ; García-Cáceres, Cristina ; de la Fuente, Esther ; Mergen, Clarita ; Bour, Susanne ; Thaler, Joshua P. ; Seeley, Randy J. ; Filosa, Jessica ; Stern, Javier E. ; Perez-Tilve, Diego ; Schwartz, Michael W. ; Tschöp, Matthias H. ; Yi, Chun-Xia</creator><creatorcontrib>Gao, Yuanqing ; Ottaway, Nickki ; Schriever, Sonja C. ; Legutko, Beata ; García-Cáceres, Cristina ; de la Fuente, Esther ; Mergen, Clarita ; Bour, Susanne ; Thaler, Joshua P. ; Seeley, Randy J. ; Filosa, Jessica ; Stern, Javier E. ; Perez-Tilve, Diego ; Schwartz, Michael W. ; Tschöp, Matthias H. ; Yi, Chun-Xia</creatorcontrib><description>The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild‐type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin‐receptor mutation), and Type‐4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1‐ir), cluster of differentiation 68 (CD68‐ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1‐ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1‐ir comparable with WT mice but had significantly lower CD68‐ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1‐ir, and db/db mice showed increase of CD68‐ir. Obese MC4R KO mice fed a SC diet had comparable iba1‐ir and CD68‐ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon‐like peptide‐1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17–25</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.22580</identifier><identifier>PMID: 24166765</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; Antigens, CD - metabolism ; Antigens, Differentiation, Myelomonocytic - metabolism ; Body Weight - drug effects ; Body Weight - physiology ; Cytokinins - metabolism ; Diet, High-Fat - adverse effects ; Disease Models, Animal ; high calorie diet ; Hormones ; Hormones - pharmacology ; leptin ; Leptin - deficiency ; Leptin - pharmacology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microglia - drug effects ; Microglia - metabolism ; Obesity ; Obesity - chemically induced ; Obesity - physiopathology ; Peptides - pharmacology ; Receptor, Melanocortin, Type 4 - deficiency ; Receptors, Interleukin-8A - genetics ; Receptors, Interleukin-8A - metabolism ; Receptors, Leptin - deficiency ; Receptors, Leptin - genetics ; Rodents ; Signal Transduction - drug effects ; Supraoptic Nucleus - cytology ; Venoms - pharmacology</subject><ispartof>Glia, 2014-01, Vol.62 (1), p.17-25</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><rights>2013 Wiley Periodicals, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4860-33c6f36257d24796a96ff06a43c32c02e8476b95e0b07501aef273d1109735e73</citedby><cites>FETCH-LOGICAL-c4860-33c6f36257d24796a96ff06a43c32c02e8476b95e0b07501aef273d1109735e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.22580$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.22580$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24166765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Yuanqing</creatorcontrib><creatorcontrib>Ottaway, Nickki</creatorcontrib><creatorcontrib>Schriever, Sonja C.</creatorcontrib><creatorcontrib>Legutko, Beata</creatorcontrib><creatorcontrib>García-Cáceres, Cristina</creatorcontrib><creatorcontrib>de la Fuente, Esther</creatorcontrib><creatorcontrib>Mergen, Clarita</creatorcontrib><creatorcontrib>Bour, Susanne</creatorcontrib><creatorcontrib>Thaler, Joshua P.</creatorcontrib><creatorcontrib>Seeley, Randy J.</creatorcontrib><creatorcontrib>Filosa, Jessica</creatorcontrib><creatorcontrib>Stern, Javier E.</creatorcontrib><creatorcontrib>Perez-Tilve, Diego</creatorcontrib><creatorcontrib>Schwartz, Michael W.</creatorcontrib><creatorcontrib>Tschöp, Matthias H.</creatorcontrib><creatorcontrib>Yi, Chun-Xia</creatorcontrib><title>Hormones and diet, but not body weight, control hypothalamic microglial activity</title><title>Glia</title><addtitle>Glia</addtitle><description>The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild‐type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin‐receptor mutation), and Type‐4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1‐ir), cluster of differentiation 68 (CD68‐ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1‐ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1‐ir comparable with WT mice but had significantly lower CD68‐ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1‐ir, and db/db mice showed increase of CD68‐ir. Obese MC4R KO mice fed a SC diet had comparable iba1‐ir and CD68‐ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon‐like peptide‐1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17–25</description><subject>Animals</subject><subject>Antigens, CD - metabolism</subject><subject>Antigens, Differentiation, Myelomonocytic - metabolism</subject><subject>Body Weight - drug effects</subject><subject>Body Weight - physiology</subject><subject>Cytokinins - metabolism</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Disease Models, Animal</subject><subject>high calorie diet</subject><subject>Hormones</subject><subject>Hormones - pharmacology</subject><subject>leptin</subject><subject>Leptin - deficiency</subject><subject>Leptin - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microglia - drug effects</subject><subject>Microglia - metabolism</subject><subject>Obesity</subject><subject>Obesity - chemically induced</subject><subject>Obesity - physiopathology</subject><subject>Peptides - pharmacology</subject><subject>Receptor, Melanocortin, Type 4 - deficiency</subject><subject>Receptors, Interleukin-8A - genetics</subject><subject>Receptors, Interleukin-8A - metabolism</subject><subject>Receptors, Leptin - deficiency</subject><subject>Receptors, Leptin - genetics</subject><subject>Rodents</subject><subject>Signal Transduction - drug effects</subject><subject>Supraoptic Nucleus - cytology</subject><subject>Venoms - pharmacology</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kElv2zAQhYmiReMsl_6AgkBvRZQMF5HSpUCaxQ7iLIckBXohKImymcqiQ9FJ9O9D17HRXHogCA6_eTPvIfSFwAEBoIeTxuoDStMMPqABgTxLCGHiIxpAlvOE8Jxsoe2uewAg8SE_oy3KiRBSpAN0M3J-5lrTYd1WuLIm7ONiEXDrAi5c1eNnYyfTWCxdG7xr8LSfuzDVjZ7ZEsfj3XJ8g3UZ7JMN_S76VOumM3tv9w66Ozu9PR4l4-vh-fHROCl5JiBhrBQ1EzSVFeUyFzoXdQ1Cc1YyWgI1GZeiyFMDBcgUiDY1lawi0Z5kqZFsB_1Y6c4XxcxUpYnr6UbNvZ1p3yunrXr_09qpmrgnxSlheQpR4NubgHePC9MF9eAWvo07K8IFZACM0kh9X1HRaNd5U28mEFDL9NXSvvqbfoS__rvTBl3HHQGyAp5tY_r_SKnh-PxoLZqsemwXzMumR_s_SkgmU_XraqhO6CVjv39eqHv2CjFinn0</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Gao, Yuanqing</creator><creator>Ottaway, Nickki</creator><creator>Schriever, Sonja C.</creator><creator>Legutko, Beata</creator><creator>García-Cáceres, Cristina</creator><creator>de la Fuente, Esther</creator><creator>Mergen, Clarita</creator><creator>Bour, Susanne</creator><creator>Thaler, Joshua P.</creator><creator>Seeley, Randy J.</creator><creator>Filosa, Jessica</creator><creator>Stern, Javier E.</creator><creator>Perez-Tilve, Diego</creator><creator>Schwartz, Michael W.</creator><creator>Tschöp, Matthias H.</creator><creator>Yi, Chun-Xia</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201401</creationdate><title>Hormones and diet, but not body weight, control hypothalamic microglial activity</title><author>Gao, Yuanqing ; Ottaway, Nickki ; Schriever, Sonja C. ; Legutko, Beata ; García-Cáceres, Cristina ; de la Fuente, Esther ; Mergen, Clarita ; Bour, Susanne ; Thaler, Joshua P. ; Seeley, Randy J. ; Filosa, Jessica ; Stern, Javier E. ; Perez-Tilve, Diego ; Schwartz, Michael W. ; Tschöp, Matthias H. ; Yi, Chun-Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4860-33c6f36257d24796a96ff06a43c32c02e8476b95e0b07501aef273d1109735e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Antigens, CD - metabolism</topic><topic>Antigens, Differentiation, Myelomonocytic - metabolism</topic><topic>Body Weight - drug effects</topic><topic>Body Weight - physiology</topic><topic>Cytokinins - metabolism</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Disease Models, Animal</topic><topic>high calorie diet</topic><topic>Hormones</topic><topic>Hormones - pharmacology</topic><topic>leptin</topic><topic>Leptin - deficiency</topic><topic>Leptin - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microglia - drug effects</topic><topic>Microglia - metabolism</topic><topic>Obesity</topic><topic>Obesity - chemically induced</topic><topic>Obesity - physiopathology</topic><topic>Peptides - pharmacology</topic><topic>Receptor, Melanocortin, Type 4 - deficiency</topic><topic>Receptors, Interleukin-8A - genetics</topic><topic>Receptors, Interleukin-8A - metabolism</topic><topic>Receptors, Leptin - deficiency</topic><topic>Receptors, Leptin - genetics</topic><topic>Rodents</topic><topic>Signal Transduction - drug effects</topic><topic>Supraoptic Nucleus - cytology</topic><topic>Venoms - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yuanqing</creatorcontrib><creatorcontrib>Ottaway, Nickki</creatorcontrib><creatorcontrib>Schriever, Sonja C.</creatorcontrib><creatorcontrib>Legutko, Beata</creatorcontrib><creatorcontrib>García-Cáceres, Cristina</creatorcontrib><creatorcontrib>de la Fuente, Esther</creatorcontrib><creatorcontrib>Mergen, Clarita</creatorcontrib><creatorcontrib>Bour, Susanne</creatorcontrib><creatorcontrib>Thaler, Joshua P.</creatorcontrib><creatorcontrib>Seeley, Randy J.</creatorcontrib><creatorcontrib>Filosa, Jessica</creatorcontrib><creatorcontrib>Stern, Javier E.</creatorcontrib><creatorcontrib>Perez-Tilve, Diego</creatorcontrib><creatorcontrib>Schwartz, Michael W.</creatorcontrib><creatorcontrib>Tschöp, Matthias H.</creatorcontrib><creatorcontrib>Yi, Chun-Xia</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yuanqing</au><au>Ottaway, Nickki</au><au>Schriever, Sonja C.</au><au>Legutko, Beata</au><au>García-Cáceres, Cristina</au><au>de la Fuente, Esther</au><au>Mergen, Clarita</au><au>Bour, Susanne</au><au>Thaler, Joshua P.</au><au>Seeley, Randy J.</au><au>Filosa, Jessica</au><au>Stern, Javier E.</au><au>Perez-Tilve, Diego</au><au>Schwartz, Michael W.</au><au>Tschöp, Matthias H.</au><au>Yi, Chun-Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hormones and diet, but not body weight, control hypothalamic microglial activity</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2014-01</date><risdate>2014</risdate><volume>62</volume><issue>1</issue><spage>17</spage><epage>25</epage><pages>17-25</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild‐type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin‐receptor mutation), and Type‐4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1‐ir), cluster of differentiation 68 (CD68‐ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1‐ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1‐ir comparable with WT mice but had significantly lower CD68‐ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1‐ir, and db/db mice showed increase of CD68‐ir. Obese MC4R KO mice fed a SC diet had comparable iba1‐ir and CD68‐ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon‐like peptide‐1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17–25</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24166765</pmid><doi>10.1002/glia.22580</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2014-01, Vol.62 (1), p.17-25
issn 0894-1491
1098-1136
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4213950
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Antigens, CD - metabolism
Antigens, Differentiation, Myelomonocytic - metabolism
Body Weight - drug effects
Body Weight - physiology
Cytokinins - metabolism
Diet, High-Fat - adverse effects
Disease Models, Animal
high calorie diet
Hormones
Hormones - pharmacology
leptin
Leptin - deficiency
Leptin - pharmacology
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microglia - drug effects
Microglia - metabolism
Obesity
Obesity - chemically induced
Obesity - physiopathology
Peptides - pharmacology
Receptor, Melanocortin, Type 4 - deficiency
Receptors, Interleukin-8A - genetics
Receptors, Interleukin-8A - metabolism
Receptors, Leptin - deficiency
Receptors, Leptin - genetics
Rodents
Signal Transduction - drug effects
Supraoptic Nucleus - cytology
Venoms - pharmacology
title Hormones and diet, but not body weight, control hypothalamic microglial activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hormones%20and%20diet,%20but%20not%20body%20weight,%20control%20hypothalamic%20microglial%20activity&rft.jtitle=Glia&rft.au=Gao,%20Yuanqing&rft.date=2014-01&rft.volume=62&rft.issue=1&rft.spage=17&rft.epage=25&rft.pages=17-25&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.22580&rft_dat=%3Cproquest_pubme%3E3134853911%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1460800322&rft_id=info:pmid/24166765&rfr_iscdi=true