Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations
Contractile forces exerted on the surrounding extracellular matrix (ECM) lead to the alignment and stretching of constituent fibers within the vicinity of cells. As a consequence, the matrix reorganizes to form thick bundles of aligned fibers that enable force transmission over distances larger than...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2014-10, Vol.107 (8), p.1829-1840 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1840 |
---|---|
container_issue | 8 |
container_start_page | 1829 |
container_title | Biophysical journal |
container_volume | 107 |
creator | Abhilash, A.S. Baker, Brendon M. Trappmann, Britta Chen, Christopher S. Shenoy, Vivek B. |
description | Contractile forces exerted on the surrounding extracellular matrix (ECM) lead to the alignment and stretching of constituent fibers within the vicinity of cells. As a consequence, the matrix reorganizes to form thick bundles of aligned fibers that enable force transmission over distances larger than the size of the cells. Contractile force-mediated remodeling of ECM fibers has bearing on a number of physiologic and pathophysiologic phenomena. In this work, we present a computational model to capture cell-mediated remodeling within fibrous matrices using finite element–based discrete fiber network simulations. The model is shown to accurately capture collagen alignment, heterogeneous deformations, and long-range force transmission observed experimentally. The zone of mechanical influence surrounding a single contractile cell and the interaction between two cells are predicted from the strain-induced alignment of fibers. Through parametric studies, the effect of cell contractility and cell shape anisotropy on matrix remodeling and force transmission are quantified and summarized in a phase diagram. For highly contractile and elongated cells, we find a sensing distance that is ten times the cell size, in agreement with experimental observations. |
doi_str_mv | 10.1016/j.bpj.2014.08.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4213674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634951400931X</els_id><sourcerecordid>1627984033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-b17393c31b9d47b401f8d25459d6ca994918096748a3a2940aa8d0353b4fae0e3</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EopfCD2CDLLFhkzCOncQGCQldWkAqD_FYW44zKQ5JfLGT2_bf43BLBSxYWfJ8c3TOHEIeMsgZsOppnze7Pi-AiRxkDoW6RTasFEUGIKvbZAMAVcaFKo_IvRh7AFaUwO6So6IUTLJKbMj-E46-xcFN59R39NQ1wS-RnlzOwVgchmUwgb4zc3AWI22u6NZP62h2A9JtAuIz-jFg69KPnyLtgh_pKxdtwBlXOQz0Pc4XPnynn92Y5H5x98mdzgwRH1y_x-Tr6cmX7Zvs7MPrt9uXZ5kVtZqzhtVccctZo1pRNwJYJ9tkvlRtZY1SQjEJqqqFNNwUSoAxsgVe8kZ0BgH5MXlx0N0tzYitxdX8oHfBjSZcaW-c_nsyuW_63O-1KBhPukngybVA8D8WjLMeU7iU20yYDqVZVdRKCuA8oY__QXu_hCnFW6mCJ6OgEsUOlA0-xoDdjRkGem1V9zq1qtdWNUidWk07j_5McbPxu8YEPD8AmG65dxh0tA4nm3oJaGfdevcf-Z_zZbQF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622309609</pqid></control><display><type>article</type><title>Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Abhilash, A.S. ; Baker, Brendon M. ; Trappmann, Britta ; Chen, Christopher S. ; Shenoy, Vivek B.</creator><creatorcontrib>Abhilash, A.S. ; Baker, Brendon M. ; Trappmann, Britta ; Chen, Christopher S. ; Shenoy, Vivek B.</creatorcontrib><description>Contractile forces exerted on the surrounding extracellular matrix (ECM) lead to the alignment and stretching of constituent fibers within the vicinity of cells. As a consequence, the matrix reorganizes to form thick bundles of aligned fibers that enable force transmission over distances larger than the size of the cells. Contractile force-mediated remodeling of ECM fibers has bearing on a number of physiologic and pathophysiologic phenomena. In this work, we present a computational model to capture cell-mediated remodeling within fibrous matrices using finite element–based discrete fiber network simulations. The model is shown to accurately capture collagen alignment, heterogeneous deformations, and long-range force transmission observed experimentally. The zone of mechanical influence surrounding a single contractile cell and the interaction between two cells are predicted from the strain-induced alignment of fibers. Through parametric studies, the effect of cell contractility and cell shape anisotropy on matrix remodeling and force transmission are quantified and summarized in a phase diagram. For highly contractile and elongated cells, we find a sensing distance that is ten times the cell size, in agreement with experimental observations.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2014.08.029</identifier><identifier>PMID: 25418164</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Anisotropy ; Cell Biophysics ; Cells ; Collagen ; Collagen - chemistry ; Elasticity ; Extracellular Matrix - chemistry ; Fibers ; Finite element analysis ; Molecular Dynamics Simulation ; Simulation</subject><ispartof>Biophysical journal, 2014-10, Vol.107 (8), p.1829-1840</ispartof><rights>2014 Biophysical Society</rights><rights>Copyright Biophysical Society Oct 21, 2014</rights><rights>2014 by the Biophysical Society. 2014 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-b17393c31b9d47b401f8d25459d6ca994918096748a3a2940aa8d0353b4fae0e3</citedby><cites>FETCH-LOGICAL-c479t-b17393c31b9d47b401f8d25459d6ca994918096748a3a2940aa8d0353b4fae0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213674/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2014.08.029$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,3551,27929,27930,46000,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25418164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abhilash, A.S.</creatorcontrib><creatorcontrib>Baker, Brendon M.</creatorcontrib><creatorcontrib>Trappmann, Britta</creatorcontrib><creatorcontrib>Chen, Christopher S.</creatorcontrib><creatorcontrib>Shenoy, Vivek B.</creatorcontrib><title>Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Contractile forces exerted on the surrounding extracellular matrix (ECM) lead to the alignment and stretching of constituent fibers within the vicinity of cells. As a consequence, the matrix reorganizes to form thick bundles of aligned fibers that enable force transmission over distances larger than the size of the cells. Contractile force-mediated remodeling of ECM fibers has bearing on a number of physiologic and pathophysiologic phenomena. In this work, we present a computational model to capture cell-mediated remodeling within fibrous matrices using finite element–based discrete fiber network simulations. The model is shown to accurately capture collagen alignment, heterogeneous deformations, and long-range force transmission observed experimentally. The zone of mechanical influence surrounding a single contractile cell and the interaction between two cells are predicted from the strain-induced alignment of fibers. Through parametric studies, the effect of cell contractility and cell shape anisotropy on matrix remodeling and force transmission are quantified and summarized in a phase diagram. For highly contractile and elongated cells, we find a sensing distance that is ten times the cell size, in agreement with experimental observations.</description><subject>Anisotropy</subject><subject>Cell Biophysics</subject><subject>Cells</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>Elasticity</subject><subject>Extracellular Matrix - chemistry</subject><subject>Fibers</subject><subject>Finite element analysis</subject><subject>Molecular Dynamics Simulation</subject><subject>Simulation</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1TAQhS0EopfCD2CDLLFhkzCOncQGCQldWkAqD_FYW44zKQ5JfLGT2_bf43BLBSxYWfJ8c3TOHEIeMsgZsOppnze7Pi-AiRxkDoW6RTasFEUGIKvbZAMAVcaFKo_IvRh7AFaUwO6So6IUTLJKbMj-E46-xcFN59R39NQ1wS-RnlzOwVgchmUwgb4zc3AWI22u6NZP62h2A9JtAuIz-jFg69KPnyLtgh_pKxdtwBlXOQz0Pc4XPnynn92Y5H5x98mdzgwRH1y_x-Tr6cmX7Zvs7MPrt9uXZ5kVtZqzhtVccctZo1pRNwJYJ9tkvlRtZY1SQjEJqqqFNNwUSoAxsgVe8kZ0BgH5MXlx0N0tzYitxdX8oHfBjSZcaW-c_nsyuW_63O-1KBhPukngybVA8D8WjLMeU7iU20yYDqVZVdRKCuA8oY__QXu_hCnFW6mCJ6OgEsUOlA0-xoDdjRkGem1V9zq1qtdWNUidWk07j_5McbPxu8YEPD8AmG65dxh0tA4nm3oJaGfdevcf-Z_zZbQF</recordid><startdate>20141021</startdate><enddate>20141021</enddate><creator>Abhilash, A.S.</creator><creator>Baker, Brendon M.</creator><creator>Trappmann, Britta</creator><creator>Chen, Christopher S.</creator><creator>Shenoy, Vivek B.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141021</creationdate><title>Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations</title><author>Abhilash, A.S. ; Baker, Brendon M. ; Trappmann, Britta ; Chen, Christopher S. ; Shenoy, Vivek B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-b17393c31b9d47b401f8d25459d6ca994918096748a3a2940aa8d0353b4fae0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anisotropy</topic><topic>Cell Biophysics</topic><topic>Cells</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>Elasticity</topic><topic>Extracellular Matrix - chemistry</topic><topic>Fibers</topic><topic>Finite element analysis</topic><topic>Molecular Dynamics Simulation</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abhilash, A.S.</creatorcontrib><creatorcontrib>Baker, Brendon M.</creatorcontrib><creatorcontrib>Trappmann, Britta</creatorcontrib><creatorcontrib>Chen, Christopher S.</creatorcontrib><creatorcontrib>Shenoy, Vivek B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abhilash, A.S.</au><au>Baker, Brendon M.</au><au>Trappmann, Britta</au><au>Chen, Christopher S.</au><au>Shenoy, Vivek B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2014-10-21</date><risdate>2014</risdate><volume>107</volume><issue>8</issue><spage>1829</spage><epage>1840</epage><pages>1829-1840</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Contractile forces exerted on the surrounding extracellular matrix (ECM) lead to the alignment and stretching of constituent fibers within the vicinity of cells. As a consequence, the matrix reorganizes to form thick bundles of aligned fibers that enable force transmission over distances larger than the size of the cells. Contractile force-mediated remodeling of ECM fibers has bearing on a number of physiologic and pathophysiologic phenomena. In this work, we present a computational model to capture cell-mediated remodeling within fibrous matrices using finite element–based discrete fiber network simulations. The model is shown to accurately capture collagen alignment, heterogeneous deformations, and long-range force transmission observed experimentally. The zone of mechanical influence surrounding a single contractile cell and the interaction between two cells are predicted from the strain-induced alignment of fibers. Through parametric studies, the effect of cell contractility and cell shape anisotropy on matrix remodeling and force transmission are quantified and summarized in a phase diagram. For highly contractile and elongated cells, we find a sensing distance that is ten times the cell size, in agreement with experimental observations.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25418164</pmid><doi>10.1016/j.bpj.2014.08.029</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2014-10, Vol.107 (8), p.1829-1840 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4213674 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Anisotropy Cell Biophysics Cells Collagen Collagen - chemistry Elasticity Extracellular Matrix - chemistry Fibers Finite element analysis Molecular Dynamics Simulation Simulation |
title | Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remodeling%20of%20Fibrous%20Extracellular%20Matrices%20by%20Contractile%20Cells:%20Predictions%20from%20Discrete%20Fiber%20Network%20Simulations&rft.jtitle=Biophysical%20journal&rft.au=Abhilash,%20A.S.&rft.date=2014-10-21&rft.volume=107&rft.issue=8&rft.spage=1829&rft.epage=1840&rft.pages=1829-1840&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2014.08.029&rft_dat=%3Cproquest_pubme%3E1627984033%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622309609&rft_id=info:pmid/25418164&rft_els_id=S000634951400931X&rfr_iscdi=true |