Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations

Contractile forces exerted on the surrounding extracellular matrix (ECM) lead to the alignment and stretching of constituent fibers within the vicinity of cells. As a consequence, the matrix reorganizes to form thick bundles of aligned fibers that enable force transmission over distances larger than...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2014-10, Vol.107 (8), p.1829-1840
Hauptverfasser: Abhilash, A.S., Baker, Brendon M., Trappmann, Britta, Chen, Christopher S., Shenoy, Vivek B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1840
container_issue 8
container_start_page 1829
container_title Biophysical journal
container_volume 107
creator Abhilash, A.S.
Baker, Brendon M.
Trappmann, Britta
Chen, Christopher S.
Shenoy, Vivek B.
description Contractile forces exerted on the surrounding extracellular matrix (ECM) lead to the alignment and stretching of constituent fibers within the vicinity of cells. As a consequence, the matrix reorganizes to form thick bundles of aligned fibers that enable force transmission over distances larger than the size of the cells. Contractile force-mediated remodeling of ECM fibers has bearing on a number of physiologic and pathophysiologic phenomena. In this work, we present a computational model to capture cell-mediated remodeling within fibrous matrices using finite element–based discrete fiber network simulations. The model is shown to accurately capture collagen alignment, heterogeneous deformations, and long-range force transmission observed experimentally. The zone of mechanical influence surrounding a single contractile cell and the interaction between two cells are predicted from the strain-induced alignment of fibers. Through parametric studies, the effect of cell contractility and cell shape anisotropy on matrix remodeling and force transmission are quantified and summarized in a phase diagram. For highly contractile and elongated cells, we find a sensing distance that is ten times the cell size, in agreement with experimental observations.
doi_str_mv 10.1016/j.bpj.2014.08.029
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4213674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634951400931X</els_id><sourcerecordid>1627984033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-b17393c31b9d47b401f8d25459d6ca994918096748a3a2940aa8d0353b4fae0e3</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EopfCD2CDLLFhkzCOncQGCQldWkAqD_FYW44zKQ5JfLGT2_bf43BLBSxYWfJ8c3TOHEIeMsgZsOppnze7Pi-AiRxkDoW6RTasFEUGIKvbZAMAVcaFKo_IvRh7AFaUwO6So6IUTLJKbMj-E46-xcFN59R39NQ1wS-RnlzOwVgchmUwgb4zc3AWI22u6NZP62h2A9JtAuIz-jFg69KPnyLtgh_pKxdtwBlXOQz0Pc4XPnynn92Y5H5x98mdzgwRH1y_x-Tr6cmX7Zvs7MPrt9uXZ5kVtZqzhtVccctZo1pRNwJYJ9tkvlRtZY1SQjEJqqqFNNwUSoAxsgVe8kZ0BgH5MXlx0N0tzYitxdX8oHfBjSZcaW-c_nsyuW_63O-1KBhPukngybVA8D8WjLMeU7iU20yYDqVZVdRKCuA8oY__QXu_hCnFW6mCJ6OgEsUOlA0-xoDdjRkGem1V9zq1qtdWNUidWk07j_5McbPxu8YEPD8AmG65dxh0tA4nm3oJaGfdevcf-Z_zZbQF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622309609</pqid></control><display><type>article</type><title>Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Abhilash, A.S. ; Baker, Brendon M. ; Trappmann, Britta ; Chen, Christopher S. ; Shenoy, Vivek B.</creator><creatorcontrib>Abhilash, A.S. ; Baker, Brendon M. ; Trappmann, Britta ; Chen, Christopher S. ; Shenoy, Vivek B.</creatorcontrib><description>Contractile forces exerted on the surrounding extracellular matrix (ECM) lead to the alignment and stretching of constituent fibers within the vicinity of cells. As a consequence, the matrix reorganizes to form thick bundles of aligned fibers that enable force transmission over distances larger than the size of the cells. Contractile force-mediated remodeling of ECM fibers has bearing on a number of physiologic and pathophysiologic phenomena. In this work, we present a computational model to capture cell-mediated remodeling within fibrous matrices using finite element–based discrete fiber network simulations. The model is shown to accurately capture collagen alignment, heterogeneous deformations, and long-range force transmission observed experimentally. The zone of mechanical influence surrounding a single contractile cell and the interaction between two cells are predicted from the strain-induced alignment of fibers. Through parametric studies, the effect of cell contractility and cell shape anisotropy on matrix remodeling and force transmission are quantified and summarized in a phase diagram. For highly contractile and elongated cells, we find a sensing distance that is ten times the cell size, in agreement with experimental observations.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2014.08.029</identifier><identifier>PMID: 25418164</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Anisotropy ; Cell Biophysics ; Cells ; Collagen ; Collagen - chemistry ; Elasticity ; Extracellular Matrix - chemistry ; Fibers ; Finite element analysis ; Molecular Dynamics Simulation ; Simulation</subject><ispartof>Biophysical journal, 2014-10, Vol.107 (8), p.1829-1840</ispartof><rights>2014 Biophysical Society</rights><rights>Copyright Biophysical Society Oct 21, 2014</rights><rights>2014 by the Biophysical Society. 2014 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-b17393c31b9d47b401f8d25459d6ca994918096748a3a2940aa8d0353b4fae0e3</citedby><cites>FETCH-LOGICAL-c479t-b17393c31b9d47b401f8d25459d6ca994918096748a3a2940aa8d0353b4fae0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213674/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2014.08.029$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,3551,27929,27930,46000,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25418164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abhilash, A.S.</creatorcontrib><creatorcontrib>Baker, Brendon M.</creatorcontrib><creatorcontrib>Trappmann, Britta</creatorcontrib><creatorcontrib>Chen, Christopher S.</creatorcontrib><creatorcontrib>Shenoy, Vivek B.</creatorcontrib><title>Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Contractile forces exerted on the surrounding extracellular matrix (ECM) lead to the alignment and stretching of constituent fibers within the vicinity of cells. As a consequence, the matrix reorganizes to form thick bundles of aligned fibers that enable force transmission over distances larger than the size of the cells. Contractile force-mediated remodeling of ECM fibers has bearing on a number of physiologic and pathophysiologic phenomena. In this work, we present a computational model to capture cell-mediated remodeling within fibrous matrices using finite element–based discrete fiber network simulations. The model is shown to accurately capture collagen alignment, heterogeneous deformations, and long-range force transmission observed experimentally. The zone of mechanical influence surrounding a single contractile cell and the interaction between two cells are predicted from the strain-induced alignment of fibers. Through parametric studies, the effect of cell contractility and cell shape anisotropy on matrix remodeling and force transmission are quantified and summarized in a phase diagram. For highly contractile and elongated cells, we find a sensing distance that is ten times the cell size, in agreement with experimental observations.</description><subject>Anisotropy</subject><subject>Cell Biophysics</subject><subject>Cells</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>Elasticity</subject><subject>Extracellular Matrix - chemistry</subject><subject>Fibers</subject><subject>Finite element analysis</subject><subject>Molecular Dynamics Simulation</subject><subject>Simulation</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1TAQhS0EopfCD2CDLLFhkzCOncQGCQldWkAqD_FYW44zKQ5JfLGT2_bf43BLBSxYWfJ8c3TOHEIeMsgZsOppnze7Pi-AiRxkDoW6RTasFEUGIKvbZAMAVcaFKo_IvRh7AFaUwO6So6IUTLJKbMj-E46-xcFN59R39NQ1wS-RnlzOwVgchmUwgb4zc3AWI22u6NZP62h2A9JtAuIz-jFg69KPnyLtgh_pKxdtwBlXOQz0Pc4XPnynn92Y5H5x98mdzgwRH1y_x-Tr6cmX7Zvs7MPrt9uXZ5kVtZqzhtVccctZo1pRNwJYJ9tkvlRtZY1SQjEJqqqFNNwUSoAxsgVe8kZ0BgH5MXlx0N0tzYitxdX8oHfBjSZcaW-c_nsyuW_63O-1KBhPukngybVA8D8WjLMeU7iU20yYDqVZVdRKCuA8oY__QXu_hCnFW6mCJ6OgEsUOlA0-xoDdjRkGem1V9zq1qtdWNUidWk07j_5McbPxu8YEPD8AmG65dxh0tA4nm3oJaGfdevcf-Z_zZbQF</recordid><startdate>20141021</startdate><enddate>20141021</enddate><creator>Abhilash, A.S.</creator><creator>Baker, Brendon M.</creator><creator>Trappmann, Britta</creator><creator>Chen, Christopher S.</creator><creator>Shenoy, Vivek B.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141021</creationdate><title>Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations</title><author>Abhilash, A.S. ; Baker, Brendon M. ; Trappmann, Britta ; Chen, Christopher S. ; Shenoy, Vivek B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-b17393c31b9d47b401f8d25459d6ca994918096748a3a2940aa8d0353b4fae0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anisotropy</topic><topic>Cell Biophysics</topic><topic>Cells</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>Elasticity</topic><topic>Extracellular Matrix - chemistry</topic><topic>Fibers</topic><topic>Finite element analysis</topic><topic>Molecular Dynamics Simulation</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abhilash, A.S.</creatorcontrib><creatorcontrib>Baker, Brendon M.</creatorcontrib><creatorcontrib>Trappmann, Britta</creatorcontrib><creatorcontrib>Chen, Christopher S.</creatorcontrib><creatorcontrib>Shenoy, Vivek B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abhilash, A.S.</au><au>Baker, Brendon M.</au><au>Trappmann, Britta</au><au>Chen, Christopher S.</au><au>Shenoy, Vivek B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2014-10-21</date><risdate>2014</risdate><volume>107</volume><issue>8</issue><spage>1829</spage><epage>1840</epage><pages>1829-1840</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Contractile forces exerted on the surrounding extracellular matrix (ECM) lead to the alignment and stretching of constituent fibers within the vicinity of cells. As a consequence, the matrix reorganizes to form thick bundles of aligned fibers that enable force transmission over distances larger than the size of the cells. Contractile force-mediated remodeling of ECM fibers has bearing on a number of physiologic and pathophysiologic phenomena. In this work, we present a computational model to capture cell-mediated remodeling within fibrous matrices using finite element–based discrete fiber network simulations. The model is shown to accurately capture collagen alignment, heterogeneous deformations, and long-range force transmission observed experimentally. The zone of mechanical influence surrounding a single contractile cell and the interaction between two cells are predicted from the strain-induced alignment of fibers. Through parametric studies, the effect of cell contractility and cell shape anisotropy on matrix remodeling and force transmission are quantified and summarized in a phase diagram. For highly contractile and elongated cells, we find a sensing distance that is ten times the cell size, in agreement with experimental observations.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25418164</pmid><doi>10.1016/j.bpj.2014.08.029</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2014-10, Vol.107 (8), p.1829-1840
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4213674
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Anisotropy
Cell Biophysics
Cells
Collagen
Collagen - chemistry
Elasticity
Extracellular Matrix - chemistry
Fibers
Finite element analysis
Molecular Dynamics Simulation
Simulation
title Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remodeling%20of%20Fibrous%20Extracellular%20Matrices%20by%20Contractile%20Cells:%20Predictions%20from%20Discrete%20Fiber%20Network%20Simulations&rft.jtitle=Biophysical%20journal&rft.au=Abhilash,%20A.S.&rft.date=2014-10-21&rft.volume=107&rft.issue=8&rft.spage=1829&rft.epage=1840&rft.pages=1829-1840&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2014.08.029&rft_dat=%3Cproquest_pubme%3E1627984033%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622309609&rft_id=info:pmid/25418164&rft_els_id=S000634951400931X&rfr_iscdi=true