Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy

Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2014-10, Vol.4 (1), p.6808, Article 6808
Hauptverfasser: Wang, Fei, Liu, Pei, Sun, Lin, Li, Cuncheng, Petrenko, Valery A., Liu, Aihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 6808
container_title Scientific reports
container_volume 4
creator Wang, Fei
Liu, Pei
Sun, Lin
Li, Cuncheng
Petrenko, Valery A.
Liu, Aihua
description Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm 2 . The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor.
doi_str_mv 10.1038/srep06808
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4210868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898156481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-f2b6b92fc3659cbe8d4e3a428bda1e08deea5dc92d2bfd42881c86e1e1b9bc283</originalsourceid><addsrcrecordid>eNplkclqHDEQhoWJiY3tQ17ACHKKoWNJvaC-hIwdb2BiQyZnoaW6p0231NES8OvkSaPxOMOY6FKqqq_-KvgR-kDJZ0pKfh48zKThhO-hQ0aqumAlY-92_gfoJIQnkl_N2oq279EBq8uKly07RH8uBldMwwRx0Pi7tC5En3RMHvAPGLtChgCTGsHgzrsJL9LXRY9vIYJ3PVhwKbxMeWcCltbgx5XsAV-nMDiLH72LMNiAO-fxUvo-zxm8TFNOH-a8UY74W67puKY34y66uAI_5dYyRzk_H6P9To4BTl7jEfp5fbW8vC3uH27uLhf3ha5KHouOqUa1rNNlU7daATcVlLJiXBlJgXADIGujW2aY6kyuc6p5AxSoapVmvDxCXza6c1ITGA02ejmK2Q-T9M_CyUG87dhhJXr3W1SMEt6sBT6-Cnj3K0GI4sklb_PNgvKW07qpOM3Upw2lvQvZvG67gRKxdlRsHc3s6e5JW_Kffxk42wAht2wPfmflf2p_ASQ1r9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898156481</pqid></control><display><type>article</type><title>Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Fei ; Liu, Pei ; Sun, Lin ; Li, Cuncheng ; Petrenko, Valery A. ; Liu, Aihua</creator><creatorcontrib>Wang, Fei ; Liu, Pei ; Sun, Lin ; Li, Cuncheng ; Petrenko, Valery A. ; Liu, Aihua</creatorcontrib><description>Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm 2 . The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep06808</identifier><identifier>PMID: 25348392</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/432 ; 631/61/2049 ; 639/925/352/2733 ; 639/925/352/2734 ; Absorption ; Biocompatibility ; Biomimetics ; Cancer ; Capsid Proteins - chemistry ; Capsid Proteins - therapeutic use ; Cell Line, Tumor ; Colorectal carcinoma ; Colorectal Neoplasms - therapy ; Colorectal Neoplasms - ultrastructure ; Colorectal Neoplasms - virology ; Electrostatic properties ; Gold - chemistry ; Humanities and Social Sciences ; Humans ; I.R. radiation ; Illumination ; Light intensity ; Molecular weight ; multidisciplinary ; N-Terminus ; Nanostructures - chemistry ; Nanostructures - therapeutic use ; Nanotechnology ; Nanotubes - chemistry ; Phages ; Phototherapy ; Proteins ; Rhodamine 6G ; Rhodamines - chemistry ; Rhodamines - therapeutic use ; Science ; Self-assembly ; Side effects ; Silver ; Silver - chemistry ; Spectroscopy, Near-Infrared</subject><ispartof>Scientific reports, 2014-10, Vol.4 (1), p.6808, Article 6808</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Oct 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-f2b6b92fc3659cbe8d4e3a428bda1e08deea5dc92d2bfd42881c86e1e1b9bc283</citedby><cites>FETCH-LOGICAL-c438t-f2b6b92fc3659cbe8d4e3a428bda1e08deea5dc92d2bfd42881c86e1e1b9bc283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210868/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210868/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25348392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Liu, Pei</creatorcontrib><creatorcontrib>Sun, Lin</creatorcontrib><creatorcontrib>Li, Cuncheng</creatorcontrib><creatorcontrib>Petrenko, Valery A.</creatorcontrib><creatorcontrib>Liu, Aihua</creatorcontrib><title>Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm 2 . The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor.</description><subject>631/326/432</subject><subject>631/61/2049</subject><subject>639/925/352/2733</subject><subject>639/925/352/2734</subject><subject>Absorption</subject><subject>Biocompatibility</subject><subject>Biomimetics</subject><subject>Cancer</subject><subject>Capsid Proteins - chemistry</subject><subject>Capsid Proteins - therapeutic use</subject><subject>Cell Line, Tumor</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - therapy</subject><subject>Colorectal Neoplasms - ultrastructure</subject><subject>Colorectal Neoplasms - virology</subject><subject>Electrostatic properties</subject><subject>Gold - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>I.R. radiation</subject><subject>Illumination</subject><subject>Light intensity</subject><subject>Molecular weight</subject><subject>multidisciplinary</subject><subject>N-Terminus</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - therapeutic use</subject><subject>Nanotechnology</subject><subject>Nanotubes - chemistry</subject><subject>Phages</subject><subject>Phototherapy</subject><subject>Proteins</subject><subject>Rhodamine 6G</subject><subject>Rhodamines - chemistry</subject><subject>Rhodamines - therapeutic use</subject><subject>Science</subject><subject>Self-assembly</subject><subject>Side effects</subject><subject>Silver</subject><subject>Silver - chemistry</subject><subject>Spectroscopy, Near-Infrared</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkclqHDEQhoWJiY3tQ17ACHKKoWNJvaC-hIwdb2BiQyZnoaW6p0231NES8OvkSaPxOMOY6FKqqq_-KvgR-kDJZ0pKfh48zKThhO-hQ0aqumAlY-92_gfoJIQnkl_N2oq279EBq8uKly07RH8uBldMwwRx0Pi7tC5En3RMHvAPGLtChgCTGsHgzrsJL9LXRY9vIYJ3PVhwKbxMeWcCltbgx5XsAV-nMDiLH72LMNiAO-fxUvo-zxm8TFNOH-a8UY74W67puKY34y66uAI_5dYyRzk_H6P9To4BTl7jEfp5fbW8vC3uH27uLhf3ha5KHouOqUa1rNNlU7daATcVlLJiXBlJgXADIGujW2aY6kyuc6p5AxSoapVmvDxCXza6c1ITGA02ejmK2Q-T9M_CyUG87dhhJXr3W1SMEt6sBT6-Cnj3K0GI4sklb_PNgvKW07qpOM3Upw2lvQvZvG67gRKxdlRsHc3s6e5JW_Kffxk42wAht2wPfmflf2p_ASQ1r9Q</recordid><startdate>20141028</startdate><enddate>20141028</enddate><creator>Wang, Fei</creator><creator>Liu, Pei</creator><creator>Sun, Lin</creator><creator>Li, Cuncheng</creator><creator>Petrenko, Valery A.</creator><creator>Liu, Aihua</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20141028</creationdate><title>Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy</title><author>Wang, Fei ; Liu, Pei ; Sun, Lin ; Li, Cuncheng ; Petrenko, Valery A. ; Liu, Aihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-f2b6b92fc3659cbe8d4e3a428bda1e08deea5dc92d2bfd42881c86e1e1b9bc283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/326/432</topic><topic>631/61/2049</topic><topic>639/925/352/2733</topic><topic>639/925/352/2734</topic><topic>Absorption</topic><topic>Biocompatibility</topic><topic>Biomimetics</topic><topic>Cancer</topic><topic>Capsid Proteins - chemistry</topic><topic>Capsid Proteins - therapeutic use</topic><topic>Cell Line, Tumor</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - therapy</topic><topic>Colorectal Neoplasms - ultrastructure</topic><topic>Colorectal Neoplasms - virology</topic><topic>Electrostatic properties</topic><topic>Gold - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>I.R. radiation</topic><topic>Illumination</topic><topic>Light intensity</topic><topic>Molecular weight</topic><topic>multidisciplinary</topic><topic>N-Terminus</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - therapeutic use</topic><topic>Nanotechnology</topic><topic>Nanotubes - chemistry</topic><topic>Phages</topic><topic>Phototherapy</topic><topic>Proteins</topic><topic>Rhodamine 6G</topic><topic>Rhodamines - chemistry</topic><topic>Rhodamines - therapeutic use</topic><topic>Science</topic><topic>Self-assembly</topic><topic>Side effects</topic><topic>Silver</topic><topic>Silver - chemistry</topic><topic>Spectroscopy, Near-Infrared</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Liu, Pei</creatorcontrib><creatorcontrib>Sun, Lin</creatorcontrib><creatorcontrib>Li, Cuncheng</creatorcontrib><creatorcontrib>Petrenko, Valery A.</creatorcontrib><creatorcontrib>Liu, Aihua</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fei</au><au>Liu, Pei</au><au>Sun, Lin</au><au>Li, Cuncheng</au><au>Petrenko, Valery A.</au><au>Liu, Aihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-10-28</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>6808</spage><pages>6808-</pages><artnum>6808</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm 2 . The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25348392</pmid><doi>10.1038/srep06808</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2014-10, Vol.4 (1), p.6808, Article 6808
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4210868
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/326/432
631/61/2049
639/925/352/2733
639/925/352/2734
Absorption
Biocompatibility
Biomimetics
Cancer
Capsid Proteins - chemistry
Capsid Proteins - therapeutic use
Cell Line, Tumor
Colorectal carcinoma
Colorectal Neoplasms - therapy
Colorectal Neoplasms - ultrastructure
Colorectal Neoplasms - virology
Electrostatic properties
Gold - chemistry
Humanities and Social Sciences
Humans
I.R. radiation
Illumination
Light intensity
Molecular weight
multidisciplinary
N-Terminus
Nanostructures - chemistry
Nanostructures - therapeutic use
Nanotechnology
Nanotubes - chemistry
Phages
Phototherapy
Proteins
Rhodamine 6G
Rhodamines - chemistry
Rhodamines - therapeutic use
Science
Self-assembly
Side effects
Silver
Silver - chemistry
Spectroscopy, Near-Infrared
title Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-mimetic%20Nanostructure%20Self-assembled%20from%20Au@Ag%20Heterogeneous%20Nanorods%20and%20Phage%20Fusion%20Proteins%20for%20Targeted%20Tumor%20Optical%20Detection%20and%20Photothermal%20Therapy&rft.jtitle=Scientific%20reports&rft.au=Wang,%20Fei&rft.date=2014-10-28&rft.volume=4&rft.issue=1&rft.spage=6808&rft.pages=6808-&rft.artnum=6808&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep06808&rft_dat=%3Cproquest_pubme%3E1898156481%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898156481&rft_id=info:pmid/25348392&rfr_iscdi=true