Images as drivers of progress in cardiac computational modelling

Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in biophysics and molecular biology 2014-08, Vol.115 (2-3), p.198-212
Hauptverfasser: Lamata, Pablo, Casero, Ramón, Carapella, Valentina, Niederer, Steve A., Bishop, Martin J., Schneider, Jürgen E., Kohl, Peter, Grau, Vicente
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue 2-3
container_start_page 198
container_title Progress in biophysics and molecular biology
container_volume 115
creator Lamata, Pablo
Casero, Ramón
Carapella, Valentina
Niederer, Steve A.
Bishop, Martin J.
Schneider, Jürgen E.
Kohl, Peter
Grau, Vicente
description Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.
doi_str_mv 10.1016/j.pbiomolbio.2014.08.005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4210662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610714000807</els_id><sourcerecordid>1652383701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-f39e0f276c6835c5018ef40b7ce4efbdec5ec790f854cf2f0b68da5640c403e63</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtVAR3Rb-AvKxl6Rjx1-5INoKaKVKXOBsOc548SqJg51dqf-eVFsKPfUyc5j33sy8RwhlUDNg6nJXz11MYxrWWnNgogZTA8g3ZMOMbiqmG35CNgC6rRQDfUrOStkBAGdavSOnXDKmRas35PPd6LZYqCu0z_GAudAU6JzTNmMpNE7Uu9xH56lP47xf3BLT5AY6ph6HIU7b9-RtcEPBD0_9nPz8-uXHzW11__3b3c3VfeWlaJcqNC1C4Fp5ZRrpJTCDQUCnPQoMXY9eotctBCOFDzxAp0zvpBLgBTSomnPy6ag777sRe4_Tkt1g5xxHlx9sctG-nEzxl92mgxWcgVJ8Fbh4Esjp9x7LYsdY_PqEmzDti2VK8sY0GtgKNUeoz6mUjOF5DQP7GIDd2X8B2McALBi7BrBSP_5_5jPxr-Mr4PoIwNWsQ8Rsi484eexjRr_YPsXXt_wB8d6eaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652383701</pqid></control><display><type>article</type><title>Images as drivers of progress in cardiac computational modelling</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lamata, Pablo ; Casero, Ramón ; Carapella, Valentina ; Niederer, Steve A. ; Bishop, Martin J. ; Schneider, Jürgen E. ; Kohl, Peter ; Grau, Vicente</creator><creatorcontrib>Lamata, Pablo ; Casero, Ramón ; Carapella, Valentina ; Niederer, Steve A. ; Bishop, Martin J. ; Schneider, Jürgen E. ; Kohl, Peter ; Grau, Vicente</creatorcontrib><description>Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2014.08.005</identifier><identifier>PMID: 25117497</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Computational cardiac physiology ; Computer Simulation ; Diagnostic Imaging - methods ; Excitation Contraction Coupling - physiology ; Heart Conduction System - anatomy &amp; histology ; Heart Conduction System - physiology ; Humans ; Medical imaging ; Models, Cardiovascular ; Myocardial Contraction - physiology ; Review ; Ventricular Function - physiology</subject><ispartof>Progress in biophysics and molecular biology, 2014-08, Vol.115 (2-3), p.198-212</ispartof><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>2014 Elsevier Ltd. All rights reserved. 2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-f39e0f276c6835c5018ef40b7ce4efbdec5ec790f854cf2f0b68da5640c403e63</citedby><cites>FETCH-LOGICAL-c549t-f39e0f276c6835c5018ef40b7ce4efbdec5ec790f854cf2f0b68da5640c403e63</cites><orcidid>0000-0002-3097-4928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079610714000807$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25117497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lamata, Pablo</creatorcontrib><creatorcontrib>Casero, Ramón</creatorcontrib><creatorcontrib>Carapella, Valentina</creatorcontrib><creatorcontrib>Niederer, Steve A.</creatorcontrib><creatorcontrib>Bishop, Martin J.</creatorcontrib><creatorcontrib>Schneider, Jürgen E.</creatorcontrib><creatorcontrib>Kohl, Peter</creatorcontrib><creatorcontrib>Grau, Vicente</creatorcontrib><title>Images as drivers of progress in cardiac computational modelling</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.</description><subject>Animals</subject><subject>Computational cardiac physiology</subject><subject>Computer Simulation</subject><subject>Diagnostic Imaging - methods</subject><subject>Excitation Contraction Coupling - physiology</subject><subject>Heart Conduction System - anatomy &amp; histology</subject><subject>Heart Conduction System - physiology</subject><subject>Humans</subject><subject>Medical imaging</subject><subject>Models, Cardiovascular</subject><subject>Myocardial Contraction - physiology</subject><subject>Review</subject><subject>Ventricular Function - physiology</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAQtVAR3Rb-AvKxl6Rjx1-5INoKaKVKXOBsOc548SqJg51dqf-eVFsKPfUyc5j33sy8RwhlUDNg6nJXz11MYxrWWnNgogZTA8g3ZMOMbiqmG35CNgC6rRQDfUrOStkBAGdavSOnXDKmRas35PPd6LZYqCu0z_GAudAU6JzTNmMpNE7Uu9xH56lP47xf3BLT5AY6ph6HIU7b9-RtcEPBD0_9nPz8-uXHzW11__3b3c3VfeWlaJcqNC1C4Fp5ZRrpJTCDQUCnPQoMXY9eotctBCOFDzxAp0zvpBLgBTSomnPy6ag777sRe4_Tkt1g5xxHlx9sctG-nEzxl92mgxWcgVJ8Fbh4Esjp9x7LYsdY_PqEmzDti2VK8sY0GtgKNUeoz6mUjOF5DQP7GIDd2X8B2McALBi7BrBSP_5_5jPxr-Mr4PoIwNWsQ8Rsi484eexjRr_YPsXXt_wB8d6eaw</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Lamata, Pablo</creator><creator>Casero, Ramón</creator><creator>Carapella, Valentina</creator><creator>Niederer, Steve A.</creator><creator>Bishop, Martin J.</creator><creator>Schneider, Jürgen E.</creator><creator>Kohl, Peter</creator><creator>Grau, Vicente</creator><general>Elsevier Ltd</general><general>Pergamon Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3097-4928</orcidid></search><sort><creationdate>20140801</creationdate><title>Images as drivers of progress in cardiac computational modelling</title><author>Lamata, Pablo ; Casero, Ramón ; Carapella, Valentina ; Niederer, Steve A. ; Bishop, Martin J. ; Schneider, Jürgen E. ; Kohl, Peter ; Grau, Vicente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-f39e0f276c6835c5018ef40b7ce4efbdec5ec790f854cf2f0b68da5640c403e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Computational cardiac physiology</topic><topic>Computer Simulation</topic><topic>Diagnostic Imaging - methods</topic><topic>Excitation Contraction Coupling - physiology</topic><topic>Heart Conduction System - anatomy &amp; histology</topic><topic>Heart Conduction System - physiology</topic><topic>Humans</topic><topic>Medical imaging</topic><topic>Models, Cardiovascular</topic><topic>Myocardial Contraction - physiology</topic><topic>Review</topic><topic>Ventricular Function - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamata, Pablo</creatorcontrib><creatorcontrib>Casero, Ramón</creatorcontrib><creatorcontrib>Carapella, Valentina</creatorcontrib><creatorcontrib>Niederer, Steve A.</creatorcontrib><creatorcontrib>Bishop, Martin J.</creatorcontrib><creatorcontrib>Schneider, Jürgen E.</creatorcontrib><creatorcontrib>Kohl, Peter</creatorcontrib><creatorcontrib>Grau, Vicente</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamata, Pablo</au><au>Casero, Ramón</au><au>Carapella, Valentina</au><au>Niederer, Steve A.</au><au>Bishop, Martin J.</au><au>Schneider, Jürgen E.</au><au>Kohl, Peter</au><au>Grau, Vicente</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Images as drivers of progress in cardiac computational modelling</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>115</volume><issue>2-3</issue><spage>198</spage><epage>212</epage><pages>198-212</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25117497</pmid><doi>10.1016/j.pbiomolbio.2014.08.005</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3097-4928</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0079-6107
ispartof Progress in biophysics and molecular biology, 2014-08, Vol.115 (2-3), p.198-212
issn 0079-6107
1873-1732
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4210662
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Computational cardiac physiology
Computer Simulation
Diagnostic Imaging - methods
Excitation Contraction Coupling - physiology
Heart Conduction System - anatomy & histology
Heart Conduction System - physiology
Humans
Medical imaging
Models, Cardiovascular
Myocardial Contraction - physiology
Review
Ventricular Function - physiology
title Images as drivers of progress in cardiac computational modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Images%20as%20drivers%20of%20progress%20in%20cardiac%20computational%20modelling&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Lamata,%20Pablo&rft.date=2014-08-01&rft.volume=115&rft.issue=2-3&rft.spage=198&rft.epage=212&rft.pages=198-212&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2014.08.005&rft_dat=%3Cproquest_pubme%3E1652383701%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652383701&rft_id=info:pmid/25117497&rft_els_id=S0079610714000807&rfr_iscdi=true