Images as drivers of progress in cardiac computational modelling
Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are und...
Gespeichert in:
Veröffentlicht in: | Progress in biophysics and molecular biology 2014-08, Vol.115 (2-3), p.198-212 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | 2-3 |
container_start_page | 198 |
container_title | Progress in biophysics and molecular biology |
container_volume | 115 |
creator | Lamata, Pablo Casero, Ramón Carapella, Valentina Niederer, Steve A. Bishop, Martin J. Schneider, Jürgen E. Kohl, Peter Grau, Vicente |
description | Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved. |
doi_str_mv | 10.1016/j.pbiomolbio.2014.08.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4210662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610714000807</els_id><sourcerecordid>1652383701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-f39e0f276c6835c5018ef40b7ce4efbdec5ec790f854cf2f0b68da5640c403e63</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtVAR3Rb-AvKxl6Rjx1-5INoKaKVKXOBsOc548SqJg51dqf-eVFsKPfUyc5j33sy8RwhlUDNg6nJXz11MYxrWWnNgogZTA8g3ZMOMbiqmG35CNgC6rRQDfUrOStkBAGdavSOnXDKmRas35PPd6LZYqCu0z_GAudAU6JzTNmMpNE7Uu9xH56lP47xf3BLT5AY6ph6HIU7b9-RtcEPBD0_9nPz8-uXHzW11__3b3c3VfeWlaJcqNC1C4Fp5ZRrpJTCDQUCnPQoMXY9eotctBCOFDzxAp0zvpBLgBTSomnPy6ag777sRe4_Tkt1g5xxHlx9sctG-nEzxl92mgxWcgVJ8Fbh4Esjp9x7LYsdY_PqEmzDti2VK8sY0GtgKNUeoz6mUjOF5DQP7GIDd2X8B2McALBi7BrBSP_5_5jPxr-Mr4PoIwNWsQ8Rsi484eexjRr_YPsXXt_wB8d6eaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652383701</pqid></control><display><type>article</type><title>Images as drivers of progress in cardiac computational modelling</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lamata, Pablo ; Casero, Ramón ; Carapella, Valentina ; Niederer, Steve A. ; Bishop, Martin J. ; Schneider, Jürgen E. ; Kohl, Peter ; Grau, Vicente</creator><creatorcontrib>Lamata, Pablo ; Casero, Ramón ; Carapella, Valentina ; Niederer, Steve A. ; Bishop, Martin J. ; Schneider, Jürgen E. ; Kohl, Peter ; Grau, Vicente</creatorcontrib><description>Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2014.08.005</identifier><identifier>PMID: 25117497</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Computational cardiac physiology ; Computer Simulation ; Diagnostic Imaging - methods ; Excitation Contraction Coupling - physiology ; Heart Conduction System - anatomy & histology ; Heart Conduction System - physiology ; Humans ; Medical imaging ; Models, Cardiovascular ; Myocardial Contraction - physiology ; Review ; Ventricular Function - physiology</subject><ispartof>Progress in biophysics and molecular biology, 2014-08, Vol.115 (2-3), p.198-212</ispartof><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>2014 Elsevier Ltd. All rights reserved. 2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-f39e0f276c6835c5018ef40b7ce4efbdec5ec790f854cf2f0b68da5640c403e63</citedby><cites>FETCH-LOGICAL-c549t-f39e0f276c6835c5018ef40b7ce4efbdec5ec790f854cf2f0b68da5640c403e63</cites><orcidid>0000-0002-3097-4928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079610714000807$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25117497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lamata, Pablo</creatorcontrib><creatorcontrib>Casero, Ramón</creatorcontrib><creatorcontrib>Carapella, Valentina</creatorcontrib><creatorcontrib>Niederer, Steve A.</creatorcontrib><creatorcontrib>Bishop, Martin J.</creatorcontrib><creatorcontrib>Schneider, Jürgen E.</creatorcontrib><creatorcontrib>Kohl, Peter</creatorcontrib><creatorcontrib>Grau, Vicente</creatorcontrib><title>Images as drivers of progress in cardiac computational modelling</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.</description><subject>Animals</subject><subject>Computational cardiac physiology</subject><subject>Computer Simulation</subject><subject>Diagnostic Imaging - methods</subject><subject>Excitation Contraction Coupling - physiology</subject><subject>Heart Conduction System - anatomy & histology</subject><subject>Heart Conduction System - physiology</subject><subject>Humans</subject><subject>Medical imaging</subject><subject>Models, Cardiovascular</subject><subject>Myocardial Contraction - physiology</subject><subject>Review</subject><subject>Ventricular Function - physiology</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAQtVAR3Rb-AvKxl6Rjx1-5INoKaKVKXOBsOc548SqJg51dqf-eVFsKPfUyc5j33sy8RwhlUDNg6nJXz11MYxrWWnNgogZTA8g3ZMOMbiqmG35CNgC6rRQDfUrOStkBAGdavSOnXDKmRas35PPd6LZYqCu0z_GAudAU6JzTNmMpNE7Uu9xH56lP47xf3BLT5AY6ph6HIU7b9-RtcEPBD0_9nPz8-uXHzW11__3b3c3VfeWlaJcqNC1C4Fp5ZRrpJTCDQUCnPQoMXY9eotctBCOFDzxAp0zvpBLgBTSomnPy6ag777sRe4_Tkt1g5xxHlx9sctG-nEzxl92mgxWcgVJ8Fbh4Esjp9x7LYsdY_PqEmzDti2VK8sY0GtgKNUeoz6mUjOF5DQP7GIDd2X8B2McALBi7BrBSP_5_5jPxr-Mr4PoIwNWsQ8Rsi484eexjRr_YPsXXt_wB8d6eaw</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Lamata, Pablo</creator><creator>Casero, Ramón</creator><creator>Carapella, Valentina</creator><creator>Niederer, Steve A.</creator><creator>Bishop, Martin J.</creator><creator>Schneider, Jürgen E.</creator><creator>Kohl, Peter</creator><creator>Grau, Vicente</creator><general>Elsevier Ltd</general><general>Pergamon Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3097-4928</orcidid></search><sort><creationdate>20140801</creationdate><title>Images as drivers of progress in cardiac computational modelling</title><author>Lamata, Pablo ; Casero, Ramón ; Carapella, Valentina ; Niederer, Steve A. ; Bishop, Martin J. ; Schneider, Jürgen E. ; Kohl, Peter ; Grau, Vicente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-f39e0f276c6835c5018ef40b7ce4efbdec5ec790f854cf2f0b68da5640c403e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Computational cardiac physiology</topic><topic>Computer Simulation</topic><topic>Diagnostic Imaging - methods</topic><topic>Excitation Contraction Coupling - physiology</topic><topic>Heart Conduction System - anatomy & histology</topic><topic>Heart Conduction System - physiology</topic><topic>Humans</topic><topic>Medical imaging</topic><topic>Models, Cardiovascular</topic><topic>Myocardial Contraction - physiology</topic><topic>Review</topic><topic>Ventricular Function - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamata, Pablo</creatorcontrib><creatorcontrib>Casero, Ramón</creatorcontrib><creatorcontrib>Carapella, Valentina</creatorcontrib><creatorcontrib>Niederer, Steve A.</creatorcontrib><creatorcontrib>Bishop, Martin J.</creatorcontrib><creatorcontrib>Schneider, Jürgen E.</creatorcontrib><creatorcontrib>Kohl, Peter</creatorcontrib><creatorcontrib>Grau, Vicente</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamata, Pablo</au><au>Casero, Ramón</au><au>Carapella, Valentina</au><au>Niederer, Steve A.</au><au>Bishop, Martin J.</au><au>Schneider, Jürgen E.</au><au>Kohl, Peter</au><au>Grau, Vicente</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Images as drivers of progress in cardiac computational modelling</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>115</volume><issue>2-3</issue><spage>198</spage><epage>212</epage><pages>198-212</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25117497</pmid><doi>10.1016/j.pbiomolbio.2014.08.005</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3097-4928</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0079-6107 |
ispartof | Progress in biophysics and molecular biology, 2014-08, Vol.115 (2-3), p.198-212 |
issn | 0079-6107 1873-1732 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4210662 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Computational cardiac physiology Computer Simulation Diagnostic Imaging - methods Excitation Contraction Coupling - physiology Heart Conduction System - anatomy & histology Heart Conduction System - physiology Humans Medical imaging Models, Cardiovascular Myocardial Contraction - physiology Review Ventricular Function - physiology |
title | Images as drivers of progress in cardiac computational modelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Images%20as%20drivers%20of%20progress%20in%20cardiac%20computational%20modelling&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Lamata,%20Pablo&rft.date=2014-08-01&rft.volume=115&rft.issue=2-3&rft.spage=198&rft.epage=212&rft.pages=198-212&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2014.08.005&rft_dat=%3Cproquest_pubme%3E1652383701%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652383701&rft_id=info:pmid/25117497&rft_els_id=S0079610714000807&rfr_iscdi=true |