Parallel Evolution of Tetrodotoxin Resistance in Three Voltage-Gated Sodium Channel Genes in the Garter Snake Thamnophis sirtalis

Members of a gene family expressed in a single species often experience common selection pressures. Consequently, the molecular basis of complex adaptations may be expected to involve parallel evolutionary changes in multiple paralogs. Here, we use bacterial artificial chromosome library scans to in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 2014-11, Vol.31 (11), p.2836-2846
Hauptverfasser: McGlothlin, Joel W., Chuckalovcak, John P., Janes, Daniel E., Edwards, Scott V., Feldman, Chris R., Brodie, Edmund D., Pfrender, Michael E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2846
container_issue 11
container_start_page 2836
container_title Molecular biology and evolution
container_volume 31
creator McGlothlin, Joel W.
Chuckalovcak, John P.
Janes, Daniel E.
Edwards, Scott V.
Feldman, Chris R.
Brodie, Edmund D.
Pfrender, Michael E.
Brodie, Edmund D.
description Members of a gene family expressed in a single species often experience common selection pressures. Consequently, the molecular basis of complex adaptations may be expected to involve parallel evolutionary changes in multiple paralogs. Here, we use bacterial artificial chromosome library scans to investigate the evolution of the voltage-gated sodium channel (Nav) family in the garter snake Thamnophis sirtalis, a predator of highly toxic Taricha newts. Newts possess tetrodotoxin (TTX), which blocks Nav’s, arresting action potentials in nerves and muscle. Some Thamnophis populations have evolved resistance to extremely high levels of TTX. Previous work has identified amino acid sites in the skeletal muscle sodium channel Nav1.4 that confer resistance to TTX and vary across populations. We identify parallel evolution of TTX resistance in two additional Nav paralogs, Nav1.6 and 1.7, which are known to be expressed in the peripheral nervous system and should thus be exposed to ingested TTX. Each paralog contains at least one TTX-resistant substitution identical to a substitution previously identified in Nav1.4. These sites are fixed across populations, suggesting that the resistant peripheral nerves antedate resistant muscle. In contrast, three sodium channels expressed solely in the central nervous system (Nav1.1–1.3) showed no evidence of TTX resistance, consistent with protection from toxins by the blood–brain barrier. We also report the exon–intron structure of six Nav paralogs, the first such analysis for snake genes. Our results demonstrate that the molecular basis of adaptation may be both repeatable across members of a gene family and predictable based on functional considerations.
doi_str_mv 10.1093/molbev/msu237
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4209135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/molbev/msu237</oup_id><sourcerecordid>3498191991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-3f2c373c2030243ecce2a989082837c278346dff3ab7df61a4f7faf96df4d2da3</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi1ERaeFJVtkiQ2bUL8SJxskNCpTpEpFdGBreZzrxiWxB9sZwZJ_XlcpVVmx8uv43Gt_CL2m5D0lHT-bwriDw9mUZsblM7SiNZcVlbR7jlZElrkgvD1GJyndEkKFaJoX6JjVlNedaFfozxcd9TjCiM8PYZyzCx4Hi7eQY-hDDr-cx18huZS1N4DLajtEAPw9jFnfQLXRGXp8HXo3T3g9aO-LagMe0j2bB8AbHTNEfO31DyiX9eTDfnAJJxezHl16iY6sHhO8ehhP0bdP59v1RXV5tfm8_nhZmZqKXHHLDJfcMMIJExyMAaa7tiMta7k0TLZcNL21XO9kbxuqhZVW267siZ71mp-iD4t3P-8m6A34XF6u9tFNOv5WQTv174l3g7oJByUY6cp3FcHbB0EMP2dIWd2GOfrSs6INq3nTNZwXqlooE0NKEexjBUrUfWJqSUwtiRX-zdO2Hum_ERXg3QKEef8f1x1wPKVV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625369633</pqid></control><display><type>article</type><title>Parallel Evolution of Tetrodotoxin Resistance in Three Voltage-Gated Sodium Channel Genes in the Garter Snake Thamnophis sirtalis</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>McGlothlin, Joel W. ; Chuckalovcak, John P. ; Janes, Daniel E. ; Edwards, Scott V. ; Feldman, Chris R. ; Brodie, Edmund D. ; Pfrender, Michael E. ; Brodie, Edmund D.</creator><creatorcontrib>McGlothlin, Joel W. ; Chuckalovcak, John P. ; Janes, Daniel E. ; Edwards, Scott V. ; Feldman, Chris R. ; Brodie, Edmund D. ; Pfrender, Michael E. ; Brodie, Edmund D.</creatorcontrib><description>Members of a gene family expressed in a single species often experience common selection pressures. Consequently, the molecular basis of complex adaptations may be expected to involve parallel evolutionary changes in multiple paralogs. Here, we use bacterial artificial chromosome library scans to investigate the evolution of the voltage-gated sodium channel (Nav) family in the garter snake Thamnophis sirtalis, a predator of highly toxic Taricha newts. Newts possess tetrodotoxin (TTX), which blocks Nav’s, arresting action potentials in nerves and muscle. Some Thamnophis populations have evolved resistance to extremely high levels of TTX. Previous work has identified amino acid sites in the skeletal muscle sodium channel Nav1.4 that confer resistance to TTX and vary across populations. We identify parallel evolution of TTX resistance in two additional Nav paralogs, Nav1.6 and 1.7, which are known to be expressed in the peripheral nervous system and should thus be exposed to ingested TTX. Each paralog contains at least one TTX-resistant substitution identical to a substitution previously identified in Nav1.4. These sites are fixed across populations, suggesting that the resistant peripheral nerves antedate resistant muscle. In contrast, three sodium channels expressed solely in the central nervous system (Nav1.1–1.3) showed no evidence of TTX resistance, consistent with protection from toxins by the blood–brain barrier. We also report the exon–intron structure of six Nav paralogs, the first such analysis for snake genes. Our results demonstrate that the molecular basis of adaptation may be both repeatable across members of a gene family and predictable based on functional considerations.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msu237</identifier><identifier>PMID: 25135948</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Adaptation, Physiological ; Amino Acid Sequence ; Amino acids ; Animals ; Biological Evolution ; Central nervous system ; Chromosomes, Artificial, Bacterial ; Colubridae - genetics ; DNA Transposable Elements ; Drug Resistance - genetics ; Evolution ; Exons ; Fast Track ; Gene expression ; Gene Library ; Genes ; Introns ; Microsatellite Repeats ; Molecular Sequence Data ; Nervous system ; Predatory Behavior ; Protein Isoforms - chemistry ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Salamandridae - physiology ; Sequence Alignment ; Snakes ; Sodium ; Sodium Channel Blockers - metabolism ; Sodium Channel Blockers - toxicity ; Tetrodotoxin - biosynthesis ; Tetrodotoxin - toxicity ; Toxins ; Voltage-Gated Sodium Channels - chemistry ; Voltage-Gated Sodium Channels - genetics ; Voltage-Gated Sodium Channels - metabolism</subject><ispartof>Molecular biology and evolution, 2014-11, Vol.31 (11), p.2836-2846</ispartof><rights>The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2014</rights><rights>The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><rights>Copyright Oxford Publishing Limited(England) Nov 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-3f2c373c2030243ecce2a989082837c278346dff3ab7df61a4f7faf96df4d2da3</citedby><cites>FETCH-LOGICAL-c514t-3f2c373c2030243ecce2a989082837c278346dff3ab7df61a4f7faf96df4d2da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209135/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209135/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25135948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McGlothlin, Joel W.</creatorcontrib><creatorcontrib>Chuckalovcak, John P.</creatorcontrib><creatorcontrib>Janes, Daniel E.</creatorcontrib><creatorcontrib>Edwards, Scott V.</creatorcontrib><creatorcontrib>Feldman, Chris R.</creatorcontrib><creatorcontrib>Brodie, Edmund D.</creatorcontrib><creatorcontrib>Pfrender, Michael E.</creatorcontrib><creatorcontrib>Brodie, Edmund D.</creatorcontrib><title>Parallel Evolution of Tetrodotoxin Resistance in Three Voltage-Gated Sodium Channel Genes in the Garter Snake Thamnophis sirtalis</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Members of a gene family expressed in a single species often experience common selection pressures. Consequently, the molecular basis of complex adaptations may be expected to involve parallel evolutionary changes in multiple paralogs. Here, we use bacterial artificial chromosome library scans to investigate the evolution of the voltage-gated sodium channel (Nav) family in the garter snake Thamnophis sirtalis, a predator of highly toxic Taricha newts. Newts possess tetrodotoxin (TTX), which blocks Nav’s, arresting action potentials in nerves and muscle. Some Thamnophis populations have evolved resistance to extremely high levels of TTX. Previous work has identified amino acid sites in the skeletal muscle sodium channel Nav1.4 that confer resistance to TTX and vary across populations. We identify parallel evolution of TTX resistance in two additional Nav paralogs, Nav1.6 and 1.7, which are known to be expressed in the peripheral nervous system and should thus be exposed to ingested TTX. Each paralog contains at least one TTX-resistant substitution identical to a substitution previously identified in Nav1.4. These sites are fixed across populations, suggesting that the resistant peripheral nerves antedate resistant muscle. In contrast, three sodium channels expressed solely in the central nervous system (Nav1.1–1.3) showed no evidence of TTX resistance, consistent with protection from toxins by the blood–brain barrier. We also report the exon–intron structure of six Nav paralogs, the first such analysis for snake genes. Our results demonstrate that the molecular basis of adaptation may be both repeatable across members of a gene family and predictable based on functional considerations.</description><subject>Adaptation, Physiological</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Central nervous system</subject><subject>Chromosomes, Artificial, Bacterial</subject><subject>Colubridae - genetics</subject><subject>DNA Transposable Elements</subject><subject>Drug Resistance - genetics</subject><subject>Evolution</subject><subject>Exons</subject><subject>Fast Track</subject><subject>Gene expression</subject><subject>Gene Library</subject><subject>Genes</subject><subject>Introns</subject><subject>Microsatellite Repeats</subject><subject>Molecular Sequence Data</subject><subject>Nervous system</subject><subject>Predatory Behavior</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Salamandridae - physiology</subject><subject>Sequence Alignment</subject><subject>Snakes</subject><subject>Sodium</subject><subject>Sodium Channel Blockers - metabolism</subject><subject>Sodium Channel Blockers - toxicity</subject><subject>Tetrodotoxin - biosynthesis</subject><subject>Tetrodotoxin - toxicity</subject><subject>Toxins</subject><subject>Voltage-Gated Sodium Channels - chemistry</subject><subject>Voltage-Gated Sodium Channels - genetics</subject><subject>Voltage-Gated Sodium Channels - metabolism</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAURi1ERaeFJVtkiQ2bUL8SJxskNCpTpEpFdGBreZzrxiWxB9sZwZJ_XlcpVVmx8uv43Gt_CL2m5D0lHT-bwriDw9mUZsblM7SiNZcVlbR7jlZElrkgvD1GJyndEkKFaJoX6JjVlNedaFfozxcd9TjCiM8PYZyzCx4Hi7eQY-hDDr-cx18huZS1N4DLajtEAPw9jFnfQLXRGXp8HXo3T3g9aO-LagMe0j2bB8AbHTNEfO31DyiX9eTDfnAJJxezHl16iY6sHhO8ehhP0bdP59v1RXV5tfm8_nhZmZqKXHHLDJfcMMIJExyMAaa7tiMta7k0TLZcNL21XO9kbxuqhZVW267siZ71mp-iD4t3P-8m6A34XF6u9tFNOv5WQTv174l3g7oJByUY6cp3FcHbB0EMP2dIWd2GOfrSs6INq3nTNZwXqlooE0NKEexjBUrUfWJqSUwtiRX-zdO2Hum_ERXg3QKEef8f1x1wPKVV</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>McGlothlin, Joel W.</creator><creator>Chuckalovcak, John P.</creator><creator>Janes, Daniel E.</creator><creator>Edwards, Scott V.</creator><creator>Feldman, Chris R.</creator><creator>Brodie, Edmund D.</creator><creator>Pfrender, Michael E.</creator><creator>Brodie, Edmund D.</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20141101</creationdate><title>Parallel Evolution of Tetrodotoxin Resistance in Three Voltage-Gated Sodium Channel Genes in the Garter Snake Thamnophis sirtalis</title><author>McGlothlin, Joel W. ; Chuckalovcak, John P. ; Janes, Daniel E. ; Edwards, Scott V. ; Feldman, Chris R. ; Brodie, Edmund D. ; Pfrender, Michael E. ; Brodie, Edmund D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-3f2c373c2030243ecce2a989082837c278346dff3ab7df61a4f7faf96df4d2da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation, Physiological</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Central nervous system</topic><topic>Chromosomes, Artificial, Bacterial</topic><topic>Colubridae - genetics</topic><topic>DNA Transposable Elements</topic><topic>Drug Resistance - genetics</topic><topic>Evolution</topic><topic>Exons</topic><topic>Fast Track</topic><topic>Gene expression</topic><topic>Gene Library</topic><topic>Genes</topic><topic>Introns</topic><topic>Microsatellite Repeats</topic><topic>Molecular Sequence Data</topic><topic>Nervous system</topic><topic>Predatory Behavior</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Salamandridae - physiology</topic><topic>Sequence Alignment</topic><topic>Snakes</topic><topic>Sodium</topic><topic>Sodium Channel Blockers - metabolism</topic><topic>Sodium Channel Blockers - toxicity</topic><topic>Tetrodotoxin - biosynthesis</topic><topic>Tetrodotoxin - toxicity</topic><topic>Toxins</topic><topic>Voltage-Gated Sodium Channels - chemistry</topic><topic>Voltage-Gated Sodium Channels - genetics</topic><topic>Voltage-Gated Sodium Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGlothlin, Joel W.</creatorcontrib><creatorcontrib>Chuckalovcak, John P.</creatorcontrib><creatorcontrib>Janes, Daniel E.</creatorcontrib><creatorcontrib>Edwards, Scott V.</creatorcontrib><creatorcontrib>Feldman, Chris R.</creatorcontrib><creatorcontrib>Brodie, Edmund D.</creatorcontrib><creatorcontrib>Pfrender, Michael E.</creatorcontrib><creatorcontrib>Brodie, Edmund D.</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGlothlin, Joel W.</au><au>Chuckalovcak, John P.</au><au>Janes, Daniel E.</au><au>Edwards, Scott V.</au><au>Feldman, Chris R.</au><au>Brodie, Edmund D.</au><au>Pfrender, Michael E.</au><au>Brodie, Edmund D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel Evolution of Tetrodotoxin Resistance in Three Voltage-Gated Sodium Channel Genes in the Garter Snake Thamnophis sirtalis</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>31</volume><issue>11</issue><spage>2836</spage><epage>2846</epage><pages>2836-2846</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Members of a gene family expressed in a single species often experience common selection pressures. Consequently, the molecular basis of complex adaptations may be expected to involve parallel evolutionary changes in multiple paralogs. Here, we use bacterial artificial chromosome library scans to investigate the evolution of the voltage-gated sodium channel (Nav) family in the garter snake Thamnophis sirtalis, a predator of highly toxic Taricha newts. Newts possess tetrodotoxin (TTX), which blocks Nav’s, arresting action potentials in nerves and muscle. Some Thamnophis populations have evolved resistance to extremely high levels of TTX. Previous work has identified amino acid sites in the skeletal muscle sodium channel Nav1.4 that confer resistance to TTX and vary across populations. We identify parallel evolution of TTX resistance in two additional Nav paralogs, Nav1.6 and 1.7, which are known to be expressed in the peripheral nervous system and should thus be exposed to ingested TTX. Each paralog contains at least one TTX-resistant substitution identical to a substitution previously identified in Nav1.4. These sites are fixed across populations, suggesting that the resistant peripheral nerves antedate resistant muscle. In contrast, three sodium channels expressed solely in the central nervous system (Nav1.1–1.3) showed no evidence of TTX resistance, consistent with protection from toxins by the blood–brain barrier. We also report the exon–intron structure of six Nav paralogs, the first such analysis for snake genes. Our results demonstrate that the molecular basis of adaptation may be both repeatable across members of a gene family and predictable based on functional considerations.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>25135948</pmid><doi>10.1093/molbev/msu237</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 2014-11, Vol.31 (11), p.2836-2846
issn 0737-4038
1537-1719
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4209135
source Oxford Journals Open Access Collection; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adaptation, Physiological
Amino Acid Sequence
Amino acids
Animals
Biological Evolution
Central nervous system
Chromosomes, Artificial, Bacterial
Colubridae - genetics
DNA Transposable Elements
Drug Resistance - genetics
Evolution
Exons
Fast Track
Gene expression
Gene Library
Genes
Introns
Microsatellite Repeats
Molecular Sequence Data
Nervous system
Predatory Behavior
Protein Isoforms - chemistry
Protein Isoforms - genetics
Protein Isoforms - metabolism
Salamandridae - physiology
Sequence Alignment
Snakes
Sodium
Sodium Channel Blockers - metabolism
Sodium Channel Blockers - toxicity
Tetrodotoxin - biosynthesis
Tetrodotoxin - toxicity
Toxins
Voltage-Gated Sodium Channels - chemistry
Voltage-Gated Sodium Channels - genetics
Voltage-Gated Sodium Channels - metabolism
title Parallel Evolution of Tetrodotoxin Resistance in Three Voltage-Gated Sodium Channel Genes in the Garter Snake Thamnophis sirtalis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Evolution%20of%20Tetrodotoxin%20Resistance%20in%20Three%20Voltage-Gated%20Sodium%20Channel%20Genes%20in%20the%20Garter%20Snake%20Thamnophis%20sirtalis&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=McGlothlin,%20Joel%20W.&rft.date=2014-11-01&rft.volume=31&rft.issue=11&rft.spage=2836&rft.epage=2846&rft.pages=2836-2846&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msu237&rft_dat=%3Cproquest_pubme%3E3498191991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625369633&rft_id=info:pmid/25135948&rft_oup_id=10.1093/molbev/msu237&rfr_iscdi=true