Pre- and postnatal calorie restriction perturbs early hypothalamic neuropeptide and energy balance

Energy balance is regulated by circulating leptin concentrations and hypothalamic leptin receptor (ObRb) signaling via STAT3 but is inhibited by SOCS3 and PTP1B. Leptin signaling enhances anorexigenic neuropeptides and receptor (POMC, MC3‐R, MC4‐R) activation while suppressing orexigenic neuropeptid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience research 2012-06, Vol.90 (6), p.1169-1182
Hauptverfasser: Shin, Bo-Chul, Dai, Yun, Thamotharan, Manikkavasagar, Gibson, L. Caroline, Devaskar, Sherin U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1182
container_issue 6
container_start_page 1169
container_title Journal of neuroscience research
container_volume 90
creator Shin, Bo-Chul
Dai, Yun
Thamotharan, Manikkavasagar
Gibson, L. Caroline
Devaskar, Sherin U.
description Energy balance is regulated by circulating leptin concentrations and hypothalamic leptin receptor (ObRb) signaling via STAT3 but is inhibited by SOCS3 and PTP1B. Leptin signaling enhances anorexigenic neuropeptides and receptor (POMC, MC3‐R, MC4‐R) activation while suppressing orexigenic neuropeptides (NPY, AgRP). We investigated in a sex‐specific manner the early (PN2) and late (PN21) postnatal hypothalamic mechanisms in response to intrauterine (IUGR), postnatal (PNGR), and combined (IPGR) calorie and growth restriction. At PN2, both male and female IUGR were hypoleptinemic, but hypothalamic leptin signaling in females was activated as seen by enhanced STAT3. In addition, increased SOCS3 and PTP1B supported early initiation of leptin resistance in females that led to elevated AgRP but diminished MC3‐R and MC4‐R. In contrast, males demonstrated leptin sensitivity seen as a reduction in PTP1B and MC3‐R and MC4‐R with no effect on neuropeptide expression. At PN21, with adequate postnatal caloric intake, a sex‐specific dichotomy in leptin concentrations was seen in IUGR, with euleptinemia in males indicative of persisting leptin sensitivity and hyperleptinemia in females consistent with leptin resistance, both with normal hypothalamic ObRb signaling, neuropeptides, and energy balance. In contrast, superimposition of PNGR upon IUGR (IPGR) led to diminished leptin concentrations with enhanced PTP1B and an imbalance in arcuate nuclear NPY/AgRP and POMC expression that favored exponential hyperphagia and diminished energy expenditure postweaning. We conclude that IUGR results in sex‐specific leptin resistance observed mainly in females, whereas PNGR and IPGR abolish this sex‐specificity, setting the stage for acquiring obesity after weaning. © 2012 Wiley Periodicals, Inc.
doi_str_mv 10.1002/jnr.23013
format Article
fullrecord <record><control><sourceid>istex_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4208917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_39JSC76K_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5183-7b6d8e4a8eca8c19f75352e5b4f20bec1b8328dbb8efc1585f234dbf2a82981b3</originalsourceid><addsrcrecordid>eNp1kEtP3DAUhS1UBFPoon-g8raLgB_x2NkgVSOgBQSIh7q0bOeGMWScyPZA8-8JDIzogtVdnO98VzoIfadkjxLC9u9D3GOcUL6BJpRUsihFKb-gCeFTUpSEsm30NaV7QkhVCb6FthnjSknBJsheRiiwCTXuu5SDyabFzrRd9IAjpBy9y74LuIeYl9EmDCa2A54PfZfnpjUL73CAZex66LOv4VUFAeLdgO2YBwe7aLMxbYJvb3cH3R4d3sx-F2cXx39mv84KJ6jihbTTWkFpFDijHK0aKbhgIGzZMGLBUas4U7W1ChpHhRIN42VtG2YUqxS1fAcdrLz90i6gdhByNK3uo1-YOOjOeP1_Evxc33WPumREVVSOgp8rgYtdShGadZcS_TK0HofWr0OP7I-Pz9bk-7IjsL8CnnwLw-cmfXJ-9a4sVg2fMvxbN0x80FPJpdB_z481r06uZ3J6qgl_Bnfrmq8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pre- and postnatal calorie restriction perturbs early hypothalamic neuropeptide and energy balance</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Shin, Bo-Chul ; Dai, Yun ; Thamotharan, Manikkavasagar ; Gibson, L. Caroline ; Devaskar, Sherin U.</creator><creatorcontrib>Shin, Bo-Chul ; Dai, Yun ; Thamotharan, Manikkavasagar ; Gibson, L. Caroline ; Devaskar, Sherin U.</creatorcontrib><description>Energy balance is regulated by circulating leptin concentrations and hypothalamic leptin receptor (ObRb) signaling via STAT3 but is inhibited by SOCS3 and PTP1B. Leptin signaling enhances anorexigenic neuropeptides and receptor (POMC, MC3‐R, MC4‐R) activation while suppressing orexigenic neuropeptides (NPY, AgRP). We investigated in a sex‐specific manner the early (PN2) and late (PN21) postnatal hypothalamic mechanisms in response to intrauterine (IUGR), postnatal (PNGR), and combined (IPGR) calorie and growth restriction. At PN2, both male and female IUGR were hypoleptinemic, but hypothalamic leptin signaling in females was activated as seen by enhanced STAT3. In addition, increased SOCS3 and PTP1B supported early initiation of leptin resistance in females that led to elevated AgRP but diminished MC3‐R and MC4‐R. In contrast, males demonstrated leptin sensitivity seen as a reduction in PTP1B and MC3‐R and MC4‐R with no effect on neuropeptide expression. At PN21, with adequate postnatal caloric intake, a sex‐specific dichotomy in leptin concentrations was seen in IUGR, with euleptinemia in males indicative of persisting leptin sensitivity and hyperleptinemia in females consistent with leptin resistance, both with normal hypothalamic ObRb signaling, neuropeptides, and energy balance. In contrast, superimposition of PNGR upon IUGR (IPGR) led to diminished leptin concentrations with enhanced PTP1B and an imbalance in arcuate nuclear NPY/AgRP and POMC expression that favored exponential hyperphagia and diminished energy expenditure postweaning. We conclude that IUGR results in sex‐specific leptin resistance observed mainly in females, whereas PNGR and IPGR abolish this sex‐specificity, setting the stage for acquiring obesity after weaning. © 2012 Wiley Periodicals, Inc.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.23013</identifier><identifier>PMID: 22388752</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Age Factors ; Agouti-Related Protein - genetics ; AgRP ; Analysis of Variance ; Animals ; Animals, Newborn ; Body Weight - drug effects ; Body Weight - physiology ; Caloric Restriction ; Drinking ; Eating ; energy expenditure ; Energy Intake ; Energy Metabolism - physiology ; Enzyme-Linked Immunosorbent Assay ; Female ; Gene Expression Regulation, Developmental - drug effects ; Gene Expression Regulation, Developmental - physiology ; hyperphagia ; Hypothalamus - drug effects ; Hypothalamus - metabolism ; Injections, Intraventricular ; Leptin - administration &amp; dosage ; Leptin - blood ; Male ; metabolic programming ; Milk - metabolism ; neuropeptide Y ; Neuropeptide Y - genetics ; Neuropeptide Y - metabolism ; Neuropeptides - genetics ; Neuropeptides - metabolism ; obesity ; Pregnancy ; Prenatal Exposure Delayed Effects - metabolism ; Prenatal Exposure Delayed Effects - pathology ; Prenatal Exposure Delayed Effects - physiopathology ; Pro-Opiomelanocortin - genetics ; Pro-Opiomelanocortin - metabolism ; proopiomelanocortin ; Rats ; Rats, Sprague-Dawley ; Receptors, Leptin - genetics ; Receptors, Leptin - metabolism ; Respiratory Physiological Phenomena ; RNA, Messenger - metabolism ; Sex Factors ; Signal Transduction - drug effects ; Signal Transduction - physiology ; STAT3 Transcription Factor - genetics ; STAT3 Transcription Factor - metabolism</subject><ispartof>Journal of neuroscience research, 2012-06, Vol.90 (6), p.1169-1182</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5183-7b6d8e4a8eca8c19f75352e5b4f20bec1b8328dbb8efc1585f234dbf2a82981b3</citedby><cites>FETCH-LOGICAL-c5183-7b6d8e4a8eca8c19f75352e5b4f20bec1b8328dbb8efc1585f234dbf2a82981b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnr.23013$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnr.23013$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22388752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Bo-Chul</creatorcontrib><creatorcontrib>Dai, Yun</creatorcontrib><creatorcontrib>Thamotharan, Manikkavasagar</creatorcontrib><creatorcontrib>Gibson, L. Caroline</creatorcontrib><creatorcontrib>Devaskar, Sherin U.</creatorcontrib><title>Pre- and postnatal calorie restriction perturbs early hypothalamic neuropeptide and energy balance</title><title>Journal of neuroscience research</title><addtitle>J. Neurosci. Res</addtitle><description>Energy balance is regulated by circulating leptin concentrations and hypothalamic leptin receptor (ObRb) signaling via STAT3 but is inhibited by SOCS3 and PTP1B. Leptin signaling enhances anorexigenic neuropeptides and receptor (POMC, MC3‐R, MC4‐R) activation while suppressing orexigenic neuropeptides (NPY, AgRP). We investigated in a sex‐specific manner the early (PN2) and late (PN21) postnatal hypothalamic mechanisms in response to intrauterine (IUGR), postnatal (PNGR), and combined (IPGR) calorie and growth restriction. At PN2, both male and female IUGR were hypoleptinemic, but hypothalamic leptin signaling in females was activated as seen by enhanced STAT3. In addition, increased SOCS3 and PTP1B supported early initiation of leptin resistance in females that led to elevated AgRP but diminished MC3‐R and MC4‐R. In contrast, males demonstrated leptin sensitivity seen as a reduction in PTP1B and MC3‐R and MC4‐R with no effect on neuropeptide expression. At PN21, with adequate postnatal caloric intake, a sex‐specific dichotomy in leptin concentrations was seen in IUGR, with euleptinemia in males indicative of persisting leptin sensitivity and hyperleptinemia in females consistent with leptin resistance, both with normal hypothalamic ObRb signaling, neuropeptides, and energy balance. In contrast, superimposition of PNGR upon IUGR (IPGR) led to diminished leptin concentrations with enhanced PTP1B and an imbalance in arcuate nuclear NPY/AgRP and POMC expression that favored exponential hyperphagia and diminished energy expenditure postweaning. We conclude that IUGR results in sex‐specific leptin resistance observed mainly in females, whereas PNGR and IPGR abolish this sex‐specificity, setting the stage for acquiring obesity after weaning. © 2012 Wiley Periodicals, Inc.</description><subject>Age Factors</subject><subject>Agouti-Related Protein - genetics</subject><subject>AgRP</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Body Weight - drug effects</subject><subject>Body Weight - physiology</subject><subject>Caloric Restriction</subject><subject>Drinking</subject><subject>Eating</subject><subject>energy expenditure</subject><subject>Energy Intake</subject><subject>Energy Metabolism - physiology</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Female</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>hyperphagia</subject><subject>Hypothalamus - drug effects</subject><subject>Hypothalamus - metabolism</subject><subject>Injections, Intraventricular</subject><subject>Leptin - administration &amp; dosage</subject><subject>Leptin - blood</subject><subject>Male</subject><subject>metabolic programming</subject><subject>Milk - metabolism</subject><subject>neuropeptide Y</subject><subject>Neuropeptide Y - genetics</subject><subject>Neuropeptide Y - metabolism</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - metabolism</subject><subject>obesity</subject><subject>Pregnancy</subject><subject>Prenatal Exposure Delayed Effects - metabolism</subject><subject>Prenatal Exposure Delayed Effects - pathology</subject><subject>Prenatal Exposure Delayed Effects - physiopathology</subject><subject>Pro-Opiomelanocortin - genetics</subject><subject>Pro-Opiomelanocortin - metabolism</subject><subject>proopiomelanocortin</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Leptin - genetics</subject><subject>Receptors, Leptin - metabolism</subject><subject>Respiratory Physiological Phenomena</subject><subject>RNA, Messenger - metabolism</subject><subject>Sex Factors</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>STAT3 Transcription Factor - genetics</subject><subject>STAT3 Transcription Factor - metabolism</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtP3DAUhS1UBFPoon-g8raLgB_x2NkgVSOgBQSIh7q0bOeGMWScyPZA8-8JDIzogtVdnO98VzoIfadkjxLC9u9D3GOcUL6BJpRUsihFKb-gCeFTUpSEsm30NaV7QkhVCb6FthnjSknBJsheRiiwCTXuu5SDyabFzrRd9IAjpBy9y74LuIeYl9EmDCa2A54PfZfnpjUL73CAZex66LOv4VUFAeLdgO2YBwe7aLMxbYJvb3cH3R4d3sx-F2cXx39mv84KJ6jihbTTWkFpFDijHK0aKbhgIGzZMGLBUas4U7W1ChpHhRIN42VtG2YUqxS1fAcdrLz90i6gdhByNK3uo1-YOOjOeP1_Evxc33WPumREVVSOgp8rgYtdShGadZcS_TK0HofWr0OP7I-Pz9bk-7IjsL8CnnwLw-cmfXJ-9a4sVg2fMvxbN0x80FPJpdB_z481r06uZ3J6qgl_Bnfrmq8</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Shin, Bo-Chul</creator><creator>Dai, Yun</creator><creator>Thamotharan, Manikkavasagar</creator><creator>Gibson, L. Caroline</creator><creator>Devaskar, Sherin U.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>201206</creationdate><title>Pre- and postnatal calorie restriction perturbs early hypothalamic neuropeptide and energy balance</title><author>Shin, Bo-Chul ; Dai, Yun ; Thamotharan, Manikkavasagar ; Gibson, L. Caroline ; Devaskar, Sherin U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5183-7b6d8e4a8eca8c19f75352e5b4f20bec1b8328dbb8efc1585f234dbf2a82981b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Age Factors</topic><topic>Agouti-Related Protein - genetics</topic><topic>AgRP</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Body Weight - drug effects</topic><topic>Body Weight - physiology</topic><topic>Caloric Restriction</topic><topic>Drinking</topic><topic>Eating</topic><topic>energy expenditure</topic><topic>Energy Intake</topic><topic>Energy Metabolism - physiology</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Female</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>hyperphagia</topic><topic>Hypothalamus - drug effects</topic><topic>Hypothalamus - metabolism</topic><topic>Injections, Intraventricular</topic><topic>Leptin - administration &amp; dosage</topic><topic>Leptin - blood</topic><topic>Male</topic><topic>metabolic programming</topic><topic>Milk - metabolism</topic><topic>neuropeptide Y</topic><topic>Neuropeptide Y - genetics</topic><topic>Neuropeptide Y - metabolism</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - metabolism</topic><topic>obesity</topic><topic>Pregnancy</topic><topic>Prenatal Exposure Delayed Effects - metabolism</topic><topic>Prenatal Exposure Delayed Effects - pathology</topic><topic>Prenatal Exposure Delayed Effects - physiopathology</topic><topic>Pro-Opiomelanocortin - genetics</topic><topic>Pro-Opiomelanocortin - metabolism</topic><topic>proopiomelanocortin</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Leptin - genetics</topic><topic>Receptors, Leptin - metabolism</topic><topic>Respiratory Physiological Phenomena</topic><topic>RNA, Messenger - metabolism</topic><topic>Sex Factors</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>STAT3 Transcription Factor - genetics</topic><topic>STAT3 Transcription Factor - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Bo-Chul</creatorcontrib><creatorcontrib>Dai, Yun</creatorcontrib><creatorcontrib>Thamotharan, Manikkavasagar</creatorcontrib><creatorcontrib>Gibson, L. Caroline</creatorcontrib><creatorcontrib>Devaskar, Sherin U.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Bo-Chul</au><au>Dai, Yun</au><au>Thamotharan, Manikkavasagar</au><au>Gibson, L. Caroline</au><au>Devaskar, Sherin U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre- and postnatal calorie restriction perturbs early hypothalamic neuropeptide and energy balance</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J. Neurosci. Res</addtitle><date>2012-06</date><risdate>2012</risdate><volume>90</volume><issue>6</issue><spage>1169</spage><epage>1182</epage><pages>1169-1182</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>Energy balance is regulated by circulating leptin concentrations and hypothalamic leptin receptor (ObRb) signaling via STAT3 but is inhibited by SOCS3 and PTP1B. Leptin signaling enhances anorexigenic neuropeptides and receptor (POMC, MC3‐R, MC4‐R) activation while suppressing orexigenic neuropeptides (NPY, AgRP). We investigated in a sex‐specific manner the early (PN2) and late (PN21) postnatal hypothalamic mechanisms in response to intrauterine (IUGR), postnatal (PNGR), and combined (IPGR) calorie and growth restriction. At PN2, both male and female IUGR were hypoleptinemic, but hypothalamic leptin signaling in females was activated as seen by enhanced STAT3. In addition, increased SOCS3 and PTP1B supported early initiation of leptin resistance in females that led to elevated AgRP but diminished MC3‐R and MC4‐R. In contrast, males demonstrated leptin sensitivity seen as a reduction in PTP1B and MC3‐R and MC4‐R with no effect on neuropeptide expression. At PN21, with adequate postnatal caloric intake, a sex‐specific dichotomy in leptin concentrations was seen in IUGR, with euleptinemia in males indicative of persisting leptin sensitivity and hyperleptinemia in females consistent with leptin resistance, both with normal hypothalamic ObRb signaling, neuropeptides, and energy balance. In contrast, superimposition of PNGR upon IUGR (IPGR) led to diminished leptin concentrations with enhanced PTP1B and an imbalance in arcuate nuclear NPY/AgRP and POMC expression that favored exponential hyperphagia and diminished energy expenditure postweaning. We conclude that IUGR results in sex‐specific leptin resistance observed mainly in females, whereas PNGR and IPGR abolish this sex‐specificity, setting the stage for acquiring obesity after weaning. © 2012 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22388752</pmid><doi>10.1002/jnr.23013</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-4012
ispartof Journal of neuroscience research, 2012-06, Vol.90 (6), p.1169-1182
issn 0360-4012
1097-4547
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4208917
source MEDLINE; Access via Wiley Online Library
subjects Age Factors
Agouti-Related Protein - genetics
AgRP
Analysis of Variance
Animals
Animals, Newborn
Body Weight - drug effects
Body Weight - physiology
Caloric Restriction
Drinking
Eating
energy expenditure
Energy Intake
Energy Metabolism - physiology
Enzyme-Linked Immunosorbent Assay
Female
Gene Expression Regulation, Developmental - drug effects
Gene Expression Regulation, Developmental - physiology
hyperphagia
Hypothalamus - drug effects
Hypothalamus - metabolism
Injections, Intraventricular
Leptin - administration & dosage
Leptin - blood
Male
metabolic programming
Milk - metabolism
neuropeptide Y
Neuropeptide Y - genetics
Neuropeptide Y - metabolism
Neuropeptides - genetics
Neuropeptides - metabolism
obesity
Pregnancy
Prenatal Exposure Delayed Effects - metabolism
Prenatal Exposure Delayed Effects - pathology
Prenatal Exposure Delayed Effects - physiopathology
Pro-Opiomelanocortin - genetics
Pro-Opiomelanocortin - metabolism
proopiomelanocortin
Rats
Rats, Sprague-Dawley
Receptors, Leptin - genetics
Receptors, Leptin - metabolism
Respiratory Physiological Phenomena
RNA, Messenger - metabolism
Sex Factors
Signal Transduction - drug effects
Signal Transduction - physiology
STAT3 Transcription Factor - genetics
STAT3 Transcription Factor - metabolism
title Pre- and postnatal calorie restriction perturbs early hypothalamic neuropeptide and energy balance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre-%20and%20postnatal%20calorie%20restriction%20perturbs%20early%20hypothalamic%20neuropeptide%20and%20energy%20balance&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Shin,%20Bo-Chul&rft.date=2012-06&rft.volume=90&rft.issue=6&rft.spage=1169&rft.epage=1182&rft.pages=1169-1182&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.23013&rft_dat=%3Cistex_pubme%3Eark_67375_WNG_39JSC76K_0%3C/istex_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22388752&rfr_iscdi=true