Pre- and postnatal calorie restriction perturbs early hypothalamic neuropeptide and energy balance
Energy balance is regulated by circulating leptin concentrations and hypothalamic leptin receptor (ObRb) signaling via STAT3 but is inhibited by SOCS3 and PTP1B. Leptin signaling enhances anorexigenic neuropeptides and receptor (POMC, MC3‐R, MC4‐R) activation while suppressing orexigenic neuropeptid...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience research 2012-06, Vol.90 (6), p.1169-1182 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1182 |
---|---|
container_issue | 6 |
container_start_page | 1169 |
container_title | Journal of neuroscience research |
container_volume | 90 |
creator | Shin, Bo-Chul Dai, Yun Thamotharan, Manikkavasagar Gibson, L. Caroline Devaskar, Sherin U. |
description | Energy balance is regulated by circulating leptin concentrations and hypothalamic leptin receptor (ObRb) signaling via STAT3 but is inhibited by SOCS3 and PTP1B. Leptin signaling enhances anorexigenic neuropeptides and receptor (POMC, MC3‐R, MC4‐R) activation while suppressing orexigenic neuropeptides (NPY, AgRP). We investigated in a sex‐specific manner the early (PN2) and late (PN21) postnatal hypothalamic mechanisms in response to intrauterine (IUGR), postnatal (PNGR), and combined (IPGR) calorie and growth restriction. At PN2, both male and female IUGR were hypoleptinemic, but hypothalamic leptin signaling in females was activated as seen by enhanced STAT3. In addition, increased SOCS3 and PTP1B supported early initiation of leptin resistance in females that led to elevated AgRP but diminished MC3‐R and MC4‐R. In contrast, males demonstrated leptin sensitivity seen as a reduction in PTP1B and MC3‐R and MC4‐R with no effect on neuropeptide expression. At PN21, with adequate postnatal caloric intake, a sex‐specific dichotomy in leptin concentrations was seen in IUGR, with euleptinemia in males indicative of persisting leptin sensitivity and hyperleptinemia in females consistent with leptin resistance, both with normal hypothalamic ObRb signaling, neuropeptides, and energy balance. In contrast, superimposition of PNGR upon IUGR (IPGR) led to diminished leptin concentrations with enhanced PTP1B and an imbalance in arcuate nuclear NPY/AgRP and POMC expression that favored exponential hyperphagia and diminished energy expenditure postweaning. We conclude that IUGR results in sex‐specific leptin resistance observed mainly in females, whereas PNGR and IPGR abolish this sex‐specificity, setting the stage for acquiring obesity after weaning. © 2012 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/jnr.23013 |
format | Article |
fullrecord | <record><control><sourceid>istex_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4208917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_39JSC76K_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5183-7b6d8e4a8eca8c19f75352e5b4f20bec1b8328dbb8efc1585f234dbf2a82981b3</originalsourceid><addsrcrecordid>eNp1kEtP3DAUhS1UBFPoon-g8raLgB_x2NkgVSOgBQSIh7q0bOeGMWScyPZA8-8JDIzogtVdnO98VzoIfadkjxLC9u9D3GOcUL6BJpRUsihFKb-gCeFTUpSEsm30NaV7QkhVCb6FthnjSknBJsheRiiwCTXuu5SDyabFzrRd9IAjpBy9y74LuIeYl9EmDCa2A54PfZfnpjUL73CAZex66LOv4VUFAeLdgO2YBwe7aLMxbYJvb3cH3R4d3sx-F2cXx39mv84KJ6jihbTTWkFpFDijHK0aKbhgIGzZMGLBUas4U7W1ChpHhRIN42VtG2YUqxS1fAcdrLz90i6gdhByNK3uo1-YOOjOeP1_Evxc33WPumREVVSOgp8rgYtdShGadZcS_TK0HofWr0OP7I-Pz9bk-7IjsL8CnnwLw-cmfXJ-9a4sVg2fMvxbN0x80FPJpdB_z481r06uZ3J6qgl_Bnfrmq8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pre- and postnatal calorie restriction perturbs early hypothalamic neuropeptide and energy balance</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Shin, Bo-Chul ; Dai, Yun ; Thamotharan, Manikkavasagar ; Gibson, L. Caroline ; Devaskar, Sherin U.</creator><creatorcontrib>Shin, Bo-Chul ; Dai, Yun ; Thamotharan, Manikkavasagar ; Gibson, L. Caroline ; Devaskar, Sherin U.</creatorcontrib><description>Energy balance is regulated by circulating leptin concentrations and hypothalamic leptin receptor (ObRb) signaling via STAT3 but is inhibited by SOCS3 and PTP1B. Leptin signaling enhances anorexigenic neuropeptides and receptor (POMC, MC3‐R, MC4‐R) activation while suppressing orexigenic neuropeptides (NPY, AgRP). We investigated in a sex‐specific manner the early (PN2) and late (PN21) postnatal hypothalamic mechanisms in response to intrauterine (IUGR), postnatal (PNGR), and combined (IPGR) calorie and growth restriction. At PN2, both male and female IUGR were hypoleptinemic, but hypothalamic leptin signaling in females was activated as seen by enhanced STAT3. In addition, increased SOCS3 and PTP1B supported early initiation of leptin resistance in females that led to elevated AgRP but diminished MC3‐R and MC4‐R. In contrast, males demonstrated leptin sensitivity seen as a reduction in PTP1B and MC3‐R and MC4‐R with no effect on neuropeptide expression. At PN21, with adequate postnatal caloric intake, a sex‐specific dichotomy in leptin concentrations was seen in IUGR, with euleptinemia in males indicative of persisting leptin sensitivity and hyperleptinemia in females consistent with leptin resistance, both with normal hypothalamic ObRb signaling, neuropeptides, and energy balance. In contrast, superimposition of PNGR upon IUGR (IPGR) led to diminished leptin concentrations with enhanced PTP1B and an imbalance in arcuate nuclear NPY/AgRP and POMC expression that favored exponential hyperphagia and diminished energy expenditure postweaning. We conclude that IUGR results in sex‐specific leptin resistance observed mainly in females, whereas PNGR and IPGR abolish this sex‐specificity, setting the stage for acquiring obesity after weaning. © 2012 Wiley Periodicals, Inc.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.23013</identifier><identifier>PMID: 22388752</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Age Factors ; Agouti-Related Protein - genetics ; AgRP ; Analysis of Variance ; Animals ; Animals, Newborn ; Body Weight - drug effects ; Body Weight - physiology ; Caloric Restriction ; Drinking ; Eating ; energy expenditure ; Energy Intake ; Energy Metabolism - physiology ; Enzyme-Linked Immunosorbent Assay ; Female ; Gene Expression Regulation, Developmental - drug effects ; Gene Expression Regulation, Developmental - physiology ; hyperphagia ; Hypothalamus - drug effects ; Hypothalamus - metabolism ; Injections, Intraventricular ; Leptin - administration & dosage ; Leptin - blood ; Male ; metabolic programming ; Milk - metabolism ; neuropeptide Y ; Neuropeptide Y - genetics ; Neuropeptide Y - metabolism ; Neuropeptides - genetics ; Neuropeptides - metabolism ; obesity ; Pregnancy ; Prenatal Exposure Delayed Effects - metabolism ; Prenatal Exposure Delayed Effects - pathology ; Prenatal Exposure Delayed Effects - physiopathology ; Pro-Opiomelanocortin - genetics ; Pro-Opiomelanocortin - metabolism ; proopiomelanocortin ; Rats ; Rats, Sprague-Dawley ; Receptors, Leptin - genetics ; Receptors, Leptin - metabolism ; Respiratory Physiological Phenomena ; RNA, Messenger - metabolism ; Sex Factors ; Signal Transduction - drug effects ; Signal Transduction - physiology ; STAT3 Transcription Factor - genetics ; STAT3 Transcription Factor - metabolism</subject><ispartof>Journal of neuroscience research, 2012-06, Vol.90 (6), p.1169-1182</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5183-7b6d8e4a8eca8c19f75352e5b4f20bec1b8328dbb8efc1585f234dbf2a82981b3</citedby><cites>FETCH-LOGICAL-c5183-7b6d8e4a8eca8c19f75352e5b4f20bec1b8328dbb8efc1585f234dbf2a82981b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnr.23013$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnr.23013$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22388752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Bo-Chul</creatorcontrib><creatorcontrib>Dai, Yun</creatorcontrib><creatorcontrib>Thamotharan, Manikkavasagar</creatorcontrib><creatorcontrib>Gibson, L. Caroline</creatorcontrib><creatorcontrib>Devaskar, Sherin U.</creatorcontrib><title>Pre- and postnatal calorie restriction perturbs early hypothalamic neuropeptide and energy balance</title><title>Journal of neuroscience research</title><addtitle>J. Neurosci. Res</addtitle><description>Energy balance is regulated by circulating leptin concentrations and hypothalamic leptin receptor (ObRb) signaling via STAT3 but is inhibited by SOCS3 and PTP1B. Leptin signaling enhances anorexigenic neuropeptides and receptor (POMC, MC3‐R, MC4‐R) activation while suppressing orexigenic neuropeptides (NPY, AgRP). We investigated in a sex‐specific manner the early (PN2) and late (PN21) postnatal hypothalamic mechanisms in response to intrauterine (IUGR), postnatal (PNGR), and combined (IPGR) calorie and growth restriction. At PN2, both male and female IUGR were hypoleptinemic, but hypothalamic leptin signaling in females was activated as seen by enhanced STAT3. In addition, increased SOCS3 and PTP1B supported early initiation of leptin resistance in females that led to elevated AgRP but diminished MC3‐R and MC4‐R. In contrast, males demonstrated leptin sensitivity seen as a reduction in PTP1B and MC3‐R and MC4‐R with no effect on neuropeptide expression. At PN21, with adequate postnatal caloric intake, a sex‐specific dichotomy in leptin concentrations was seen in IUGR, with euleptinemia in males indicative of persisting leptin sensitivity and hyperleptinemia in females consistent with leptin resistance, both with normal hypothalamic ObRb signaling, neuropeptides, and energy balance. In contrast, superimposition of PNGR upon IUGR (IPGR) led to diminished leptin concentrations with enhanced PTP1B and an imbalance in arcuate nuclear NPY/AgRP and POMC expression that favored exponential hyperphagia and diminished energy expenditure postweaning. We conclude that IUGR results in sex‐specific leptin resistance observed mainly in females, whereas PNGR and IPGR abolish this sex‐specificity, setting the stage for acquiring obesity after weaning. © 2012 Wiley Periodicals, Inc.</description><subject>Age Factors</subject><subject>Agouti-Related Protein - genetics</subject><subject>AgRP</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Body Weight - drug effects</subject><subject>Body Weight - physiology</subject><subject>Caloric Restriction</subject><subject>Drinking</subject><subject>Eating</subject><subject>energy expenditure</subject><subject>Energy Intake</subject><subject>Energy Metabolism - physiology</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Female</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>hyperphagia</subject><subject>Hypothalamus - drug effects</subject><subject>Hypothalamus - metabolism</subject><subject>Injections, Intraventricular</subject><subject>Leptin - administration & dosage</subject><subject>Leptin - blood</subject><subject>Male</subject><subject>metabolic programming</subject><subject>Milk - metabolism</subject><subject>neuropeptide Y</subject><subject>Neuropeptide Y - genetics</subject><subject>Neuropeptide Y - metabolism</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - metabolism</subject><subject>obesity</subject><subject>Pregnancy</subject><subject>Prenatal Exposure Delayed Effects - metabolism</subject><subject>Prenatal Exposure Delayed Effects - pathology</subject><subject>Prenatal Exposure Delayed Effects - physiopathology</subject><subject>Pro-Opiomelanocortin - genetics</subject><subject>Pro-Opiomelanocortin - metabolism</subject><subject>proopiomelanocortin</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Leptin - genetics</subject><subject>Receptors, Leptin - metabolism</subject><subject>Respiratory Physiological Phenomena</subject><subject>RNA, Messenger - metabolism</subject><subject>Sex Factors</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>STAT3 Transcription Factor - genetics</subject><subject>STAT3 Transcription Factor - metabolism</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtP3DAUhS1UBFPoon-g8raLgB_x2NkgVSOgBQSIh7q0bOeGMWScyPZA8-8JDIzogtVdnO98VzoIfadkjxLC9u9D3GOcUL6BJpRUsihFKb-gCeFTUpSEsm30NaV7QkhVCb6FthnjSknBJsheRiiwCTXuu5SDyabFzrRd9IAjpBy9y74LuIeYl9EmDCa2A54PfZfnpjUL73CAZex66LOv4VUFAeLdgO2YBwe7aLMxbYJvb3cH3R4d3sx-F2cXx39mv84KJ6jihbTTWkFpFDijHK0aKbhgIGzZMGLBUas4U7W1ChpHhRIN42VtG2YUqxS1fAcdrLz90i6gdhByNK3uo1-YOOjOeP1_Evxc33WPumREVVSOgp8rgYtdShGadZcS_TK0HofWr0OP7I-Pz9bk-7IjsL8CnnwLw-cmfXJ-9a4sVg2fMvxbN0x80FPJpdB_z481r06uZ3J6qgl_Bnfrmq8</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Shin, Bo-Chul</creator><creator>Dai, Yun</creator><creator>Thamotharan, Manikkavasagar</creator><creator>Gibson, L. Caroline</creator><creator>Devaskar, Sherin U.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>201206</creationdate><title>Pre- and postnatal calorie restriction perturbs early hypothalamic neuropeptide and energy balance</title><author>Shin, Bo-Chul ; Dai, Yun ; Thamotharan, Manikkavasagar ; Gibson, L. Caroline ; Devaskar, Sherin U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5183-7b6d8e4a8eca8c19f75352e5b4f20bec1b8328dbb8efc1585f234dbf2a82981b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Age Factors</topic><topic>Agouti-Related Protein - genetics</topic><topic>AgRP</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Body Weight - drug effects</topic><topic>Body Weight - physiology</topic><topic>Caloric Restriction</topic><topic>Drinking</topic><topic>Eating</topic><topic>energy expenditure</topic><topic>Energy Intake</topic><topic>Energy Metabolism - physiology</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Female</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>hyperphagia</topic><topic>Hypothalamus - drug effects</topic><topic>Hypothalamus - metabolism</topic><topic>Injections, Intraventricular</topic><topic>Leptin - administration & dosage</topic><topic>Leptin - blood</topic><topic>Male</topic><topic>metabolic programming</topic><topic>Milk - metabolism</topic><topic>neuropeptide Y</topic><topic>Neuropeptide Y - genetics</topic><topic>Neuropeptide Y - metabolism</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - metabolism</topic><topic>obesity</topic><topic>Pregnancy</topic><topic>Prenatal Exposure Delayed Effects - metabolism</topic><topic>Prenatal Exposure Delayed Effects - pathology</topic><topic>Prenatal Exposure Delayed Effects - physiopathology</topic><topic>Pro-Opiomelanocortin - genetics</topic><topic>Pro-Opiomelanocortin - metabolism</topic><topic>proopiomelanocortin</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Leptin - genetics</topic><topic>Receptors, Leptin - metabolism</topic><topic>Respiratory Physiological Phenomena</topic><topic>RNA, Messenger - metabolism</topic><topic>Sex Factors</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>STAT3 Transcription Factor - genetics</topic><topic>STAT3 Transcription Factor - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Bo-Chul</creatorcontrib><creatorcontrib>Dai, Yun</creatorcontrib><creatorcontrib>Thamotharan, Manikkavasagar</creatorcontrib><creatorcontrib>Gibson, L. Caroline</creatorcontrib><creatorcontrib>Devaskar, Sherin U.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Bo-Chul</au><au>Dai, Yun</au><au>Thamotharan, Manikkavasagar</au><au>Gibson, L. Caroline</au><au>Devaskar, Sherin U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre- and postnatal calorie restriction perturbs early hypothalamic neuropeptide and energy balance</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J. Neurosci. Res</addtitle><date>2012-06</date><risdate>2012</risdate><volume>90</volume><issue>6</issue><spage>1169</spage><epage>1182</epage><pages>1169-1182</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>Energy balance is regulated by circulating leptin concentrations and hypothalamic leptin receptor (ObRb) signaling via STAT3 but is inhibited by SOCS3 and PTP1B. Leptin signaling enhances anorexigenic neuropeptides and receptor (POMC, MC3‐R, MC4‐R) activation while suppressing orexigenic neuropeptides (NPY, AgRP). We investigated in a sex‐specific manner the early (PN2) and late (PN21) postnatal hypothalamic mechanisms in response to intrauterine (IUGR), postnatal (PNGR), and combined (IPGR) calorie and growth restriction. At PN2, both male and female IUGR were hypoleptinemic, but hypothalamic leptin signaling in females was activated as seen by enhanced STAT3. In addition, increased SOCS3 and PTP1B supported early initiation of leptin resistance in females that led to elevated AgRP but diminished MC3‐R and MC4‐R. In contrast, males demonstrated leptin sensitivity seen as a reduction in PTP1B and MC3‐R and MC4‐R with no effect on neuropeptide expression. At PN21, with adequate postnatal caloric intake, a sex‐specific dichotomy in leptin concentrations was seen in IUGR, with euleptinemia in males indicative of persisting leptin sensitivity and hyperleptinemia in females consistent with leptin resistance, both with normal hypothalamic ObRb signaling, neuropeptides, and energy balance. In contrast, superimposition of PNGR upon IUGR (IPGR) led to diminished leptin concentrations with enhanced PTP1B and an imbalance in arcuate nuclear NPY/AgRP and POMC expression that favored exponential hyperphagia and diminished energy expenditure postweaning. We conclude that IUGR results in sex‐specific leptin resistance observed mainly in females, whereas PNGR and IPGR abolish this sex‐specificity, setting the stage for acquiring obesity after weaning. © 2012 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22388752</pmid><doi>10.1002/jnr.23013</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-4012 |
ispartof | Journal of neuroscience research, 2012-06, Vol.90 (6), p.1169-1182 |
issn | 0360-4012 1097-4547 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4208917 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Age Factors Agouti-Related Protein - genetics AgRP Analysis of Variance Animals Animals, Newborn Body Weight - drug effects Body Weight - physiology Caloric Restriction Drinking Eating energy expenditure Energy Intake Energy Metabolism - physiology Enzyme-Linked Immunosorbent Assay Female Gene Expression Regulation, Developmental - drug effects Gene Expression Regulation, Developmental - physiology hyperphagia Hypothalamus - drug effects Hypothalamus - metabolism Injections, Intraventricular Leptin - administration & dosage Leptin - blood Male metabolic programming Milk - metabolism neuropeptide Y Neuropeptide Y - genetics Neuropeptide Y - metabolism Neuropeptides - genetics Neuropeptides - metabolism obesity Pregnancy Prenatal Exposure Delayed Effects - metabolism Prenatal Exposure Delayed Effects - pathology Prenatal Exposure Delayed Effects - physiopathology Pro-Opiomelanocortin - genetics Pro-Opiomelanocortin - metabolism proopiomelanocortin Rats Rats, Sprague-Dawley Receptors, Leptin - genetics Receptors, Leptin - metabolism Respiratory Physiological Phenomena RNA, Messenger - metabolism Sex Factors Signal Transduction - drug effects Signal Transduction - physiology STAT3 Transcription Factor - genetics STAT3 Transcription Factor - metabolism |
title | Pre- and postnatal calorie restriction perturbs early hypothalamic neuropeptide and energy balance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre-%20and%20postnatal%20calorie%20restriction%20perturbs%20early%20hypothalamic%20neuropeptide%20and%20energy%20balance&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Shin,%20Bo-Chul&rft.date=2012-06&rft.volume=90&rft.issue=6&rft.spage=1169&rft.epage=1182&rft.pages=1169-1182&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.23013&rft_dat=%3Cistex_pubme%3Eark_67375_WNG_39JSC76K_0%3C/istex_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22388752&rfr_iscdi=true |