Internal representations for face detection: An application of noise-based image classification to BOLD responses
What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise‐based image classification to BOLD responses recorded in...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2013-11, Vol.34 (11), p.3101-3115 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3115 |
---|---|
container_issue | 11 |
container_start_page | 3101 |
container_title | Human brain mapping |
container_volume | 34 |
creator | Nestor, Adrian Vettel, Jean M. Tarr, Michael J. |
description | What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise‐based image classification to BOLD responses recorded in high‐level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face‐selective areas in the human ventral cortex. Using behaviorally and neurally‐derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally‐coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise‐based image classification in conjunction with fMRI to help uncover the structure of high‐level perceptual representations. Hum Brain Mapp 34:3101–3115, 2013. © 2012 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/hbm.22128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4204487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3105150451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5778-d9e3206094caa80776f5d652ef40cd8f59e7f2e0e79f898fa6791e9820e24a353</originalsourceid><addsrcrecordid>eNp1kUlv1TAURiMEogMs-APIEkKCRVpPiW0WSB2grfSgAhXRneXnXLdu8-LUziv03-O8iUFiZcs-99xrf0XxguA9gjHdv57O9iglVD4qtglWosREscfjvq5KxQXZKnZSusGYkAqTp8UWpYIQyvB2cXfWDRA706IIfYQE3WAGH7qEXIjIGQuogQHsePYOHXTI9H3r7YJBwaEu-ATl1CRokJ-ZK0C2NSl5t2aGgA7PJ8dZn_qshfSseOJMm-D5at0tvn38cHF0Wk7OT86ODialrYSQZaOAUVxjxa0xEgtRu6qpKwqOY9tIVykQjgIGoZxU0plaKAJKUgyUG1ax3eL90tvPpzNobH5ZNK3uYx4zPuhgvP77pvPX-irca04x51JkwZuVIIa7OaRBz3yy0LamgzBPmvCMVbXiJKOv_kFvwnz81QXFaqmYGIVvl5SNIaUIbjMMwXoMUucg9SLIzL78c_oNuU4uA69XgEnWtC6azvr0mxOSspqP3P6S--FbePh_R316-GndulxW-DTAz02Fibe6FkxU-vvnE33Mvl4SdXmhv7BfRKHElA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443689377</pqid></control><display><type>article</type><title>Internal representations for face detection: An application of noise-based image classification to BOLD responses</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Nestor, Adrian ; Vettel, Jean M. ; Tarr, Michael J.</creator><creatorcontrib>Nestor, Adrian ; Vettel, Jean M. ; Tarr, Michael J.</creatorcontrib><description>What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise‐based image classification to BOLD responses recorded in high‐level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face‐selective areas in the human ventral cortex. Using behaviorally and neurally‐derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally‐coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise‐based image classification in conjunction with fMRI to help uncover the structure of high‐level perceptual representations. Hum Brain Mapp 34:3101–3115, 2013. © 2012 Wiley Periodicals, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>ISSN: 1097-0193</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.22128</identifier><identifier>PMID: 22711230</identifier><language>eng</language><publisher>New York, NY: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Biological and medical sciences ; Brain Mapping - methods ; Discrimination, Psychological - physiology ; Echo-Planar Imaging - methods ; Face - physiology ; face recognition ; Female ; fMRI ; Fundamental and applied biological sciences. Psychology ; Human ; Humans ; Image Processing, Computer-Assisted - classification ; Image Processing, Computer-Assisted - methods ; Investigative techniques, diagnostic techniques (general aspects) ; Learning. Memory ; Magnetic Resonance Imaging - classification ; Magnetic Resonance Imaging - methods ; Male ; Medical sciences ; Memory ; Nervous system ; Oxygen - blood ; Photic Stimulation ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychomotor Performance - physiology ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; reverse correlation ; Social Perception ; Visual Perception - physiology ; Young Adult</subject><ispartof>Human brain mapping, 2013-11, Vol.34 (11), p.3101-3115</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5778-d9e3206094caa80776f5d652ef40cd8f59e7f2e0e79f898fa6791e9820e24a353</citedby><cites>FETCH-LOGICAL-c5778-d9e3206094caa80776f5d652ef40cd8f59e7f2e0e79f898fa6791e9820e24a353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204487/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204487/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27823640$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22711230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nestor, Adrian</creatorcontrib><creatorcontrib>Vettel, Jean M.</creatorcontrib><creatorcontrib>Tarr, Michael J.</creatorcontrib><title>Internal representations for face detection: An application of noise-based image classification to BOLD responses</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise‐based image classification to BOLD responses recorded in high‐level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face‐selective areas in the human ventral cortex. Using behaviorally and neurally‐derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally‐coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise‐based image classification in conjunction with fMRI to help uncover the structure of high‐level perceptual representations. Hum Brain Mapp 34:3101–3115, 2013. © 2012 Wiley Periodicals, Inc.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Brain Mapping - methods</subject><subject>Discrimination, Psychological - physiology</subject><subject>Echo-Planar Imaging - methods</subject><subject>Face - physiology</subject><subject>face recognition</subject><subject>Female</subject><subject>fMRI</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - classification</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Learning. Memory</subject><subject>Magnetic Resonance Imaging - classification</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Memory</subject><subject>Nervous system</subject><subject>Oxygen - blood</subject><subject>Photic Stimulation</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychomotor Performance - physiology</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>reverse correlation</subject><subject>Social Perception</subject><subject>Visual Perception - physiology</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUlv1TAURiMEogMs-APIEkKCRVpPiW0WSB2grfSgAhXRneXnXLdu8-LUziv03-O8iUFiZcs-99xrf0XxguA9gjHdv57O9iglVD4qtglWosREscfjvq5KxQXZKnZSusGYkAqTp8UWpYIQyvB2cXfWDRA706IIfYQE3WAGH7qEXIjIGQuogQHsePYOHXTI9H3r7YJBwaEu-ATl1CRokJ-ZK0C2NSl5t2aGgA7PJ8dZn_qshfSseOJMm-D5at0tvn38cHF0Wk7OT86ODialrYSQZaOAUVxjxa0xEgtRu6qpKwqOY9tIVykQjgIGoZxU0plaKAJKUgyUG1ax3eL90tvPpzNobH5ZNK3uYx4zPuhgvP77pvPX-irca04x51JkwZuVIIa7OaRBz3yy0LamgzBPmvCMVbXiJKOv_kFvwnz81QXFaqmYGIVvl5SNIaUIbjMMwXoMUucg9SLIzL78c_oNuU4uA69XgEnWtC6azvr0mxOSspqP3P6S--FbePh_R316-GndulxW-DTAz02Fibe6FkxU-vvnE33Mvl4SdXmhv7BfRKHElA</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Nestor, Adrian</creator><creator>Vettel, Jean M.</creator><creator>Tarr, Michael J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Liss</general><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201311</creationdate><title>Internal representations for face detection: An application of noise-based image classification to BOLD responses</title><author>Nestor, Adrian ; Vettel, Jean M. ; Tarr, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5778-d9e3206094caa80776f5d652ef40cd8f59e7f2e0e79f898fa6791e9820e24a353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Brain Mapping - methods</topic><topic>Discrimination, Psychological - physiology</topic><topic>Echo-Planar Imaging - methods</topic><topic>Face - physiology</topic><topic>face recognition</topic><topic>Female</topic><topic>fMRI</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - classification</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Learning. Memory</topic><topic>Magnetic Resonance Imaging - classification</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Memory</topic><topic>Nervous system</topic><topic>Oxygen - blood</topic><topic>Photic Stimulation</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychomotor Performance - physiology</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>reverse correlation</topic><topic>Social Perception</topic><topic>Visual Perception - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nestor, Adrian</creatorcontrib><creatorcontrib>Vettel, Jean M.</creatorcontrib><creatorcontrib>Tarr, Michael J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nestor, Adrian</au><au>Vettel, Jean M.</au><au>Tarr, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal representations for face detection: An application of noise-based image classification to BOLD responses</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2013-11</date><risdate>2013</risdate><volume>34</volume><issue>11</issue><spage>3101</spage><epage>3115</epage><pages>3101-3115</pages><issn>1065-9471</issn><issn>1097-0193</issn><eissn>1097-0193</eissn><abstract>What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise‐based image classification to BOLD responses recorded in high‐level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face‐selective areas in the human ventral cortex. Using behaviorally and neurally‐derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally‐coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise‐based image classification in conjunction with fMRI to help uncover the structure of high‐level perceptual representations. Hum Brain Mapp 34:3101–3115, 2013. © 2012 Wiley Periodicals, Inc.</abstract><cop>New York, NY</cop><pub>Blackwell Publishing Ltd</pub><pmid>22711230</pmid><doi>10.1002/hbm.22128</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2013-11, Vol.34 (11), p.3101-3115 |
issn | 1065-9471 1097-0193 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4204487 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Biological and medical sciences Brain Mapping - methods Discrimination, Psychological - physiology Echo-Planar Imaging - methods Face - physiology face recognition Female fMRI Fundamental and applied biological sciences. Psychology Human Humans Image Processing, Computer-Assisted - classification Image Processing, Computer-Assisted - methods Investigative techniques, diagnostic techniques (general aspects) Learning. Memory Magnetic Resonance Imaging - classification Magnetic Resonance Imaging - methods Male Medical sciences Memory Nervous system Oxygen - blood Photic Stimulation Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Psychomotor Performance - physiology Radiodiagnosis. Nmr imagery. Nmr spectrometry reverse correlation Social Perception Visual Perception - physiology Young Adult |
title | Internal representations for face detection: An application of noise-based image classification to BOLD responses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20representations%20for%20face%20detection:%20An%20application%20of%20noise-based%20image%20classification%20to%20BOLD%20responses&rft.jtitle=Human%20brain%20mapping&rft.au=Nestor,%20Adrian&rft.date=2013-11&rft.volume=34&rft.issue=11&rft.spage=3101&rft.epage=3115&rft.pages=3101-3115&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.22128&rft_dat=%3Cproquest_pubme%3E3105150451%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443689377&rft_id=info:pmid/22711230&rfr_iscdi=true |