Localized micro- and nano-scale remodelling in the diabetic aorta

[Display omitted] Diabetes is strongly associated with cardiovascular disease, but the mechanisms, structural and biomechanical consequences of aberrant blood vessel remodelling remain poorly defined. Using an experimental (streptozotocin, STZ) rat model of diabetes, we hypothesized that diabetes en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2014-11, Vol.10 (11), p.4843-4851
Hauptverfasser: Akhtar, R., Cruickshank, J.K., Zhao, X., Walton, L.A., Gardiner, N.J., Barrett, S.D., Graham, H.K., Derby, B., Sherratt, M.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4851
container_issue 11
container_start_page 4843
container_title Acta biomaterialia
container_volume 10
creator Akhtar, R.
Cruickshank, J.K.
Zhao, X.
Walton, L.A.
Gardiner, N.J.
Barrett, S.D.
Graham, H.K.
Derby, B.
Sherratt, M.J.
description [Display omitted] Diabetes is strongly associated with cardiovascular disease, but the mechanisms, structural and biomechanical consequences of aberrant blood vessel remodelling remain poorly defined. Using an experimental (streptozotocin, STZ) rat model of diabetes, we hypothesized that diabetes enhances extracellular protease activity in the aorta and induces morphological, compositional and localized micromechanical tissue remodelling. We found that the medial aortic layer underwent significant thickening in diabetic animals but without significant changes in collagen or elastin (abundance). Scanning acoustic microscopy demonstrated that such tissue remodelling was associated with a significant decrease in acoustic wave speed (an indicator of reduced material stiffness) in the inter-lamellar spaces of the vessel wall. This index of decreased stiffness was also linked to increased extracellular protease activity (assessed by semi-quantitative in situ gelatin zymography). Such a proteolytically active environment may affect the macromolecular structure of long-lived extracellular matrix molecules. To test this hypothesis, we also characterized the effects of diabetes on the ultrastructure of an important elastic fibre component: the fibrillin microfibril. Using size exclusion chromatography and atomic force microscopy, we isolated and imaged microfibrils from both healthy and diabetic aortas. Microfibrils derived from diabetic tissues were fragmented, morphologically disrupted and weakened (as assessed following molecular combing). These structural and functional abnormalities were not replicated by in vitro glycation. Our data suggest that proteolysis may be a key driver of localized mechanical change in the inter-lamellar space of diabetic rat aortas and that structural proteins (such as fibrillin microfbrils) may be biomarkers of diabetes induced damage.
doi_str_mv 10.1016/j.actbio.2014.07.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4199142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706114002955</els_id><sourcerecordid>1609101574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-612bada5b308fbea79fa95f9d0d50df7cb6566a3d0bb1ef198de661686c733d03</originalsourceid><addsrcrecordid>eNp9kMFO5DAMhqPVogUG3gChHvfSbtI2SXtBGiFgkUbiAufISVzIqE0g6Yy0PD1BMwvsZU-2bP-_7Y-QM0YrRpn4ta7AzNqFqqasraisKGXfyBHrZFdKLrrvOZdtXUoq2CE5TmlNadOxuvtBDmueNZzXR2S5CgZG94q2mJyJoSzA28KDD2XKDSwiTsHiODr_WDhfzE9YWAcaZ2cKCHGGE3IwwJjwdB8X5OH66v7yd7m6u7m9XK5Kw5tmLgWrNVjguqHdoBFkP0DPh95Sy6kdpNGCCwGNpVozHFjfWRSCiU4Y2eRqsyAXO9_njZ7QGvRzhFE9RzdB_KMCOPVvx7sn9Ri2qmV9z9o6G_zcG8TwssE0q8klk18Dj2GTFBO0z2S5bPNouxvNRFKKOHysYVS901drtaOv3ukrKlWmn2XnX0_8EP3F_fkDZlBbh1El49AbtC6imZUN7v8b3gAeSpjj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609101574</pqid></control><display><type>article</type><title>Localized micro- and nano-scale remodelling in the diabetic aorta</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Akhtar, R. ; Cruickshank, J.K. ; Zhao, X. ; Walton, L.A. ; Gardiner, N.J. ; Barrett, S.D. ; Graham, H.K. ; Derby, B. ; Sherratt, M.J.</creator><creatorcontrib>Akhtar, R. ; Cruickshank, J.K. ; Zhao, X. ; Walton, L.A. ; Gardiner, N.J. ; Barrett, S.D. ; Graham, H.K. ; Derby, B. ; Sherratt, M.J.</creatorcontrib><description>[Display omitted] Diabetes is strongly associated with cardiovascular disease, but the mechanisms, structural and biomechanical consequences of aberrant blood vessel remodelling remain poorly defined. Using an experimental (streptozotocin, STZ) rat model of diabetes, we hypothesized that diabetes enhances extracellular protease activity in the aorta and induces morphological, compositional and localized micromechanical tissue remodelling. We found that the medial aortic layer underwent significant thickening in diabetic animals but without significant changes in collagen or elastin (abundance). Scanning acoustic microscopy demonstrated that such tissue remodelling was associated with a significant decrease in acoustic wave speed (an indicator of reduced material stiffness) in the inter-lamellar spaces of the vessel wall. This index of decreased stiffness was also linked to increased extracellular protease activity (assessed by semi-quantitative in situ gelatin zymography). Such a proteolytically active environment may affect the macromolecular structure of long-lived extracellular matrix molecules. To test this hypothesis, we also characterized the effects of diabetes on the ultrastructure of an important elastic fibre component: the fibrillin microfibril. Using size exclusion chromatography and atomic force microscopy, we isolated and imaged microfibrils from both healthy and diabetic aortas. Microfibrils derived from diabetic tissues were fragmented, morphologically disrupted and weakened (as assessed following molecular combing). These structural and functional abnormalities were not replicated by in vitro glycation. Our data suggest that proteolysis may be a key driver of localized mechanical change in the inter-lamellar space of diabetic rat aortas and that structural proteins (such as fibrillin microfbrils) may be biomarkers of diabetes induced damage.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2014.07.001</identifier><identifier>PMID: 25014552</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Aorta - pathology ; Aorta - physiopathology ; Arterial stiffening ; Blood Glucose - metabolism ; Body Weight ; Collagen - metabolism ; Diabetes Mellitus - blood ; Diabetes Mellitus - physiopathology ; Extracellular matrix ; Fibrillin microfibrils ; Fibrillins ; Gelatinases - metabolism ; Glycosylation ; Male ; Mechanical properties ; Microfibrils - ultrastructure ; Microfilament Proteins - metabolism ; Nanotechnology ; Rats, Wistar ; Sound ; Tunica Media - pathology ; Type 1 diabetes ; Vascular Remodeling</subject><ispartof>Acta biomaterialia, 2014-11, Vol.10 (11), p.4843-4851</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>2014 Elsevier Ltd. All rights reserved. 2014 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-612bada5b308fbea79fa95f9d0d50df7cb6566a3d0bb1ef198de661686c733d03</citedby><cites>FETCH-LOGICAL-c533t-612bada5b308fbea79fa95f9d0d50df7cb6566a3d0bb1ef198de661686c733d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706114002955$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25014552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akhtar, R.</creatorcontrib><creatorcontrib>Cruickshank, J.K.</creatorcontrib><creatorcontrib>Zhao, X.</creatorcontrib><creatorcontrib>Walton, L.A.</creatorcontrib><creatorcontrib>Gardiner, N.J.</creatorcontrib><creatorcontrib>Barrett, S.D.</creatorcontrib><creatorcontrib>Graham, H.K.</creatorcontrib><creatorcontrib>Derby, B.</creatorcontrib><creatorcontrib>Sherratt, M.J.</creatorcontrib><title>Localized micro- and nano-scale remodelling in the diabetic aorta</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted] Diabetes is strongly associated with cardiovascular disease, but the mechanisms, structural and biomechanical consequences of aberrant blood vessel remodelling remain poorly defined. Using an experimental (streptozotocin, STZ) rat model of diabetes, we hypothesized that diabetes enhances extracellular protease activity in the aorta and induces morphological, compositional and localized micromechanical tissue remodelling. We found that the medial aortic layer underwent significant thickening in diabetic animals but without significant changes in collagen or elastin (abundance). Scanning acoustic microscopy demonstrated that such tissue remodelling was associated with a significant decrease in acoustic wave speed (an indicator of reduced material stiffness) in the inter-lamellar spaces of the vessel wall. This index of decreased stiffness was also linked to increased extracellular protease activity (assessed by semi-quantitative in situ gelatin zymography). Such a proteolytically active environment may affect the macromolecular structure of long-lived extracellular matrix molecules. To test this hypothesis, we also characterized the effects of diabetes on the ultrastructure of an important elastic fibre component: the fibrillin microfibril. Using size exclusion chromatography and atomic force microscopy, we isolated and imaged microfibrils from both healthy and diabetic aortas. Microfibrils derived from diabetic tissues were fragmented, morphologically disrupted and weakened (as assessed following molecular combing). These structural and functional abnormalities were not replicated by in vitro glycation. Our data suggest that proteolysis may be a key driver of localized mechanical change in the inter-lamellar space of diabetic rat aortas and that structural proteins (such as fibrillin microfbrils) may be biomarkers of diabetes induced damage.</description><subject>Animals</subject><subject>Aorta - pathology</subject><subject>Aorta - physiopathology</subject><subject>Arterial stiffening</subject><subject>Blood Glucose - metabolism</subject><subject>Body Weight</subject><subject>Collagen - metabolism</subject><subject>Diabetes Mellitus - blood</subject><subject>Diabetes Mellitus - physiopathology</subject><subject>Extracellular matrix</subject><subject>Fibrillin microfibrils</subject><subject>Fibrillins</subject><subject>Gelatinases - metabolism</subject><subject>Glycosylation</subject><subject>Male</subject><subject>Mechanical properties</subject><subject>Microfibrils - ultrastructure</subject><subject>Microfilament Proteins - metabolism</subject><subject>Nanotechnology</subject><subject>Rats, Wistar</subject><subject>Sound</subject><subject>Tunica Media - pathology</subject><subject>Type 1 diabetes</subject><subject>Vascular Remodeling</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFO5DAMhqPVogUG3gChHvfSbtI2SXtBGiFgkUbiAufISVzIqE0g6Yy0PD1BMwvsZU-2bP-_7Y-QM0YrRpn4ta7AzNqFqqasraisKGXfyBHrZFdKLrrvOZdtXUoq2CE5TmlNadOxuvtBDmueNZzXR2S5CgZG94q2mJyJoSzA28KDD2XKDSwiTsHiODr_WDhfzE9YWAcaZ2cKCHGGE3IwwJjwdB8X5OH66v7yd7m6u7m9XK5Kw5tmLgWrNVjguqHdoBFkP0DPh95Sy6kdpNGCCwGNpVozHFjfWRSCiU4Y2eRqsyAXO9_njZ7QGvRzhFE9RzdB_KMCOPVvx7sn9Ri2qmV9z9o6G_zcG8TwssE0q8klk18Dj2GTFBO0z2S5bPNouxvNRFKKOHysYVS901drtaOv3ukrKlWmn2XnX0_8EP3F_fkDZlBbh1El49AbtC6imZUN7v8b3gAeSpjj</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Akhtar, R.</creator><creator>Cruickshank, J.K.</creator><creator>Zhao, X.</creator><creator>Walton, L.A.</creator><creator>Gardiner, N.J.</creator><creator>Barrett, S.D.</creator><creator>Graham, H.K.</creator><creator>Derby, B.</creator><creator>Sherratt, M.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141101</creationdate><title>Localized micro- and nano-scale remodelling in the diabetic aorta</title><author>Akhtar, R. ; Cruickshank, J.K. ; Zhao, X. ; Walton, L.A. ; Gardiner, N.J. ; Barrett, S.D. ; Graham, H.K. ; Derby, B. ; Sherratt, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-612bada5b308fbea79fa95f9d0d50df7cb6566a3d0bb1ef198de661686c733d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Aorta - pathology</topic><topic>Aorta - physiopathology</topic><topic>Arterial stiffening</topic><topic>Blood Glucose - metabolism</topic><topic>Body Weight</topic><topic>Collagen - metabolism</topic><topic>Diabetes Mellitus - blood</topic><topic>Diabetes Mellitus - physiopathology</topic><topic>Extracellular matrix</topic><topic>Fibrillin microfibrils</topic><topic>Fibrillins</topic><topic>Gelatinases - metabolism</topic><topic>Glycosylation</topic><topic>Male</topic><topic>Mechanical properties</topic><topic>Microfibrils - ultrastructure</topic><topic>Microfilament Proteins - metabolism</topic><topic>Nanotechnology</topic><topic>Rats, Wistar</topic><topic>Sound</topic><topic>Tunica Media - pathology</topic><topic>Type 1 diabetes</topic><topic>Vascular Remodeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akhtar, R.</creatorcontrib><creatorcontrib>Cruickshank, J.K.</creatorcontrib><creatorcontrib>Zhao, X.</creatorcontrib><creatorcontrib>Walton, L.A.</creatorcontrib><creatorcontrib>Gardiner, N.J.</creatorcontrib><creatorcontrib>Barrett, S.D.</creatorcontrib><creatorcontrib>Graham, H.K.</creatorcontrib><creatorcontrib>Derby, B.</creatorcontrib><creatorcontrib>Sherratt, M.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akhtar, R.</au><au>Cruickshank, J.K.</au><au>Zhao, X.</au><au>Walton, L.A.</au><au>Gardiner, N.J.</au><au>Barrett, S.D.</au><au>Graham, H.K.</au><au>Derby, B.</au><au>Sherratt, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized micro- and nano-scale remodelling in the diabetic aorta</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>10</volume><issue>11</issue><spage>4843</spage><epage>4851</epage><pages>4843-4851</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted] Diabetes is strongly associated with cardiovascular disease, but the mechanisms, structural and biomechanical consequences of aberrant blood vessel remodelling remain poorly defined. Using an experimental (streptozotocin, STZ) rat model of diabetes, we hypothesized that diabetes enhances extracellular protease activity in the aorta and induces morphological, compositional and localized micromechanical tissue remodelling. We found that the medial aortic layer underwent significant thickening in diabetic animals but without significant changes in collagen or elastin (abundance). Scanning acoustic microscopy demonstrated that such tissue remodelling was associated with a significant decrease in acoustic wave speed (an indicator of reduced material stiffness) in the inter-lamellar spaces of the vessel wall. This index of decreased stiffness was also linked to increased extracellular protease activity (assessed by semi-quantitative in situ gelatin zymography). Such a proteolytically active environment may affect the macromolecular structure of long-lived extracellular matrix molecules. To test this hypothesis, we also characterized the effects of diabetes on the ultrastructure of an important elastic fibre component: the fibrillin microfibril. Using size exclusion chromatography and atomic force microscopy, we isolated and imaged microfibrils from both healthy and diabetic aortas. Microfibrils derived from diabetic tissues were fragmented, morphologically disrupted and weakened (as assessed following molecular combing). These structural and functional abnormalities were not replicated by in vitro glycation. Our data suggest that proteolysis may be a key driver of localized mechanical change in the inter-lamellar space of diabetic rat aortas and that structural proteins (such as fibrillin microfbrils) may be biomarkers of diabetes induced damage.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25014552</pmid><doi>10.1016/j.actbio.2014.07.001</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2014-11, Vol.10 (11), p.4843-4851
issn 1742-7061
1878-7568
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4199142
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Aorta - pathology
Aorta - physiopathology
Arterial stiffening
Blood Glucose - metabolism
Body Weight
Collagen - metabolism
Diabetes Mellitus - blood
Diabetes Mellitus - physiopathology
Extracellular matrix
Fibrillin microfibrils
Fibrillins
Gelatinases - metabolism
Glycosylation
Male
Mechanical properties
Microfibrils - ultrastructure
Microfilament Proteins - metabolism
Nanotechnology
Rats, Wistar
Sound
Tunica Media - pathology
Type 1 diabetes
Vascular Remodeling
title Localized micro- and nano-scale remodelling in the diabetic aorta
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20micro-%20and%20nano-scale%20remodelling%20in%20the%20diabetic%20aorta&rft.jtitle=Acta%20biomaterialia&rft.au=Akhtar,%20R.&rft.date=2014-11-01&rft.volume=10&rft.issue=11&rft.spage=4843&rft.epage=4851&rft.pages=4843-4851&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2014.07.001&rft_dat=%3Cproquest_pubme%3E1609101574%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609101574&rft_id=info:pmid/25014552&rft_els_id=S1742706114002955&rfr_iscdi=true