Localized micro- and nano-scale remodelling in the diabetic aorta
[Display omitted] Diabetes is strongly associated with cardiovascular disease, but the mechanisms, structural and biomechanical consequences of aberrant blood vessel remodelling remain poorly defined. Using an experimental (streptozotocin, STZ) rat model of diabetes, we hypothesized that diabetes en...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2014-11, Vol.10 (11), p.4843-4851 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4851 |
---|---|
container_issue | 11 |
container_start_page | 4843 |
container_title | Acta biomaterialia |
container_volume | 10 |
creator | Akhtar, R. Cruickshank, J.K. Zhao, X. Walton, L.A. Gardiner, N.J. Barrett, S.D. Graham, H.K. Derby, B. Sherratt, M.J. |
description | [Display omitted]
Diabetes is strongly associated with cardiovascular disease, but the mechanisms, structural and biomechanical consequences of aberrant blood vessel remodelling remain poorly defined. Using an experimental (streptozotocin, STZ) rat model of diabetes, we hypothesized that diabetes enhances extracellular protease activity in the aorta and induces morphological, compositional and localized micromechanical tissue remodelling. We found that the medial aortic layer underwent significant thickening in diabetic animals but without significant changes in collagen or elastin (abundance). Scanning acoustic microscopy demonstrated that such tissue remodelling was associated with a significant decrease in acoustic wave speed (an indicator of reduced material stiffness) in the inter-lamellar spaces of the vessel wall. This index of decreased stiffness was also linked to increased extracellular protease activity (assessed by semi-quantitative in situ gelatin zymography). Such a proteolytically active environment may affect the macromolecular structure of long-lived extracellular matrix molecules. To test this hypothesis, we also characterized the effects of diabetes on the ultrastructure of an important elastic fibre component: the fibrillin microfibril. Using size exclusion chromatography and atomic force microscopy, we isolated and imaged microfibrils from both healthy and diabetic aortas. Microfibrils derived from diabetic tissues were fragmented, morphologically disrupted and weakened (as assessed following molecular combing). These structural and functional abnormalities were not replicated by in vitro glycation. Our data suggest that proteolysis may be a key driver of localized mechanical change in the inter-lamellar space of diabetic rat aortas and that structural proteins (such as fibrillin microfbrils) may be biomarkers of diabetes induced damage. |
doi_str_mv | 10.1016/j.actbio.2014.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4199142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706114002955</els_id><sourcerecordid>1609101574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-612bada5b308fbea79fa95f9d0d50df7cb6566a3d0bb1ef198de661686c733d03</originalsourceid><addsrcrecordid>eNp9kMFO5DAMhqPVogUG3gChHvfSbtI2SXtBGiFgkUbiAufISVzIqE0g6Yy0PD1BMwvsZU-2bP-_7Y-QM0YrRpn4ta7AzNqFqqasraisKGXfyBHrZFdKLrrvOZdtXUoq2CE5TmlNadOxuvtBDmueNZzXR2S5CgZG94q2mJyJoSzA28KDD2XKDSwiTsHiODr_WDhfzE9YWAcaZ2cKCHGGE3IwwJjwdB8X5OH66v7yd7m6u7m9XK5Kw5tmLgWrNVjguqHdoBFkP0DPh95Sy6kdpNGCCwGNpVozHFjfWRSCiU4Y2eRqsyAXO9_njZ7QGvRzhFE9RzdB_KMCOPVvx7sn9Ri2qmV9z9o6G_zcG8TwssE0q8klk18Dj2GTFBO0z2S5bPNouxvNRFKKOHysYVS901drtaOv3ukrKlWmn2XnX0_8EP3F_fkDZlBbh1El49AbtC6imZUN7v8b3gAeSpjj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609101574</pqid></control><display><type>article</type><title>Localized micro- and nano-scale remodelling in the diabetic aorta</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Akhtar, R. ; Cruickshank, J.K. ; Zhao, X. ; Walton, L.A. ; Gardiner, N.J. ; Barrett, S.D. ; Graham, H.K. ; Derby, B. ; Sherratt, M.J.</creator><creatorcontrib>Akhtar, R. ; Cruickshank, J.K. ; Zhao, X. ; Walton, L.A. ; Gardiner, N.J. ; Barrett, S.D. ; Graham, H.K. ; Derby, B. ; Sherratt, M.J.</creatorcontrib><description>[Display omitted]
Diabetes is strongly associated with cardiovascular disease, but the mechanisms, structural and biomechanical consequences of aberrant blood vessel remodelling remain poorly defined. Using an experimental (streptozotocin, STZ) rat model of diabetes, we hypothesized that diabetes enhances extracellular protease activity in the aorta and induces morphological, compositional and localized micromechanical tissue remodelling. We found that the medial aortic layer underwent significant thickening in diabetic animals but without significant changes in collagen or elastin (abundance). Scanning acoustic microscopy demonstrated that such tissue remodelling was associated with a significant decrease in acoustic wave speed (an indicator of reduced material stiffness) in the inter-lamellar spaces of the vessel wall. This index of decreased stiffness was also linked to increased extracellular protease activity (assessed by semi-quantitative in situ gelatin zymography). Such a proteolytically active environment may affect the macromolecular structure of long-lived extracellular matrix molecules. To test this hypothesis, we also characterized the effects of diabetes on the ultrastructure of an important elastic fibre component: the fibrillin microfibril. Using size exclusion chromatography and atomic force microscopy, we isolated and imaged microfibrils from both healthy and diabetic aortas. Microfibrils derived from diabetic tissues were fragmented, morphologically disrupted and weakened (as assessed following molecular combing). These structural and functional abnormalities were not replicated by in vitro glycation. Our data suggest that proteolysis may be a key driver of localized mechanical change in the inter-lamellar space of diabetic rat aortas and that structural proteins (such as fibrillin microfbrils) may be biomarkers of diabetes induced damage.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2014.07.001</identifier><identifier>PMID: 25014552</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Aorta - pathology ; Aorta - physiopathology ; Arterial stiffening ; Blood Glucose - metabolism ; Body Weight ; Collagen - metabolism ; Diabetes Mellitus - blood ; Diabetes Mellitus - physiopathology ; Extracellular matrix ; Fibrillin microfibrils ; Fibrillins ; Gelatinases - metabolism ; Glycosylation ; Male ; Mechanical properties ; Microfibrils - ultrastructure ; Microfilament Proteins - metabolism ; Nanotechnology ; Rats, Wistar ; Sound ; Tunica Media - pathology ; Type 1 diabetes ; Vascular Remodeling</subject><ispartof>Acta biomaterialia, 2014-11, Vol.10 (11), p.4843-4851</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>2014 Elsevier Ltd. All rights reserved. 2014 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-612bada5b308fbea79fa95f9d0d50df7cb6566a3d0bb1ef198de661686c733d03</citedby><cites>FETCH-LOGICAL-c533t-612bada5b308fbea79fa95f9d0d50df7cb6566a3d0bb1ef198de661686c733d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706114002955$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25014552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akhtar, R.</creatorcontrib><creatorcontrib>Cruickshank, J.K.</creatorcontrib><creatorcontrib>Zhao, X.</creatorcontrib><creatorcontrib>Walton, L.A.</creatorcontrib><creatorcontrib>Gardiner, N.J.</creatorcontrib><creatorcontrib>Barrett, S.D.</creatorcontrib><creatorcontrib>Graham, H.K.</creatorcontrib><creatorcontrib>Derby, B.</creatorcontrib><creatorcontrib>Sherratt, M.J.</creatorcontrib><title>Localized micro- and nano-scale remodelling in the diabetic aorta</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted]
Diabetes is strongly associated with cardiovascular disease, but the mechanisms, structural and biomechanical consequences of aberrant blood vessel remodelling remain poorly defined. Using an experimental (streptozotocin, STZ) rat model of diabetes, we hypothesized that diabetes enhances extracellular protease activity in the aorta and induces morphological, compositional and localized micromechanical tissue remodelling. We found that the medial aortic layer underwent significant thickening in diabetic animals but without significant changes in collagen or elastin (abundance). Scanning acoustic microscopy demonstrated that such tissue remodelling was associated with a significant decrease in acoustic wave speed (an indicator of reduced material stiffness) in the inter-lamellar spaces of the vessel wall. This index of decreased stiffness was also linked to increased extracellular protease activity (assessed by semi-quantitative in situ gelatin zymography). Such a proteolytically active environment may affect the macromolecular structure of long-lived extracellular matrix molecules. To test this hypothesis, we also characterized the effects of diabetes on the ultrastructure of an important elastic fibre component: the fibrillin microfibril. Using size exclusion chromatography and atomic force microscopy, we isolated and imaged microfibrils from both healthy and diabetic aortas. Microfibrils derived from diabetic tissues were fragmented, morphologically disrupted and weakened (as assessed following molecular combing). These structural and functional abnormalities were not replicated by in vitro glycation. Our data suggest that proteolysis may be a key driver of localized mechanical change in the inter-lamellar space of diabetic rat aortas and that structural proteins (such as fibrillin microfbrils) may be biomarkers of diabetes induced damage.</description><subject>Animals</subject><subject>Aorta - pathology</subject><subject>Aorta - physiopathology</subject><subject>Arterial stiffening</subject><subject>Blood Glucose - metabolism</subject><subject>Body Weight</subject><subject>Collagen - metabolism</subject><subject>Diabetes Mellitus - blood</subject><subject>Diabetes Mellitus - physiopathology</subject><subject>Extracellular matrix</subject><subject>Fibrillin microfibrils</subject><subject>Fibrillins</subject><subject>Gelatinases - metabolism</subject><subject>Glycosylation</subject><subject>Male</subject><subject>Mechanical properties</subject><subject>Microfibrils - ultrastructure</subject><subject>Microfilament Proteins - metabolism</subject><subject>Nanotechnology</subject><subject>Rats, Wistar</subject><subject>Sound</subject><subject>Tunica Media - pathology</subject><subject>Type 1 diabetes</subject><subject>Vascular Remodeling</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFO5DAMhqPVogUG3gChHvfSbtI2SXtBGiFgkUbiAufISVzIqE0g6Yy0PD1BMwvsZU-2bP-_7Y-QM0YrRpn4ta7AzNqFqqasraisKGXfyBHrZFdKLrrvOZdtXUoq2CE5TmlNadOxuvtBDmueNZzXR2S5CgZG94q2mJyJoSzA28KDD2XKDSwiTsHiODr_WDhfzE9YWAcaZ2cKCHGGE3IwwJjwdB8X5OH66v7yd7m6u7m9XK5Kw5tmLgWrNVjguqHdoBFkP0DPh95Sy6kdpNGCCwGNpVozHFjfWRSCiU4Y2eRqsyAXO9_njZ7QGvRzhFE9RzdB_KMCOPVvx7sn9Ri2qmV9z9o6G_zcG8TwssE0q8klk18Dj2GTFBO0z2S5bPNouxvNRFKKOHysYVS901drtaOv3ukrKlWmn2XnX0_8EP3F_fkDZlBbh1El49AbtC6imZUN7v8b3gAeSpjj</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Akhtar, R.</creator><creator>Cruickshank, J.K.</creator><creator>Zhao, X.</creator><creator>Walton, L.A.</creator><creator>Gardiner, N.J.</creator><creator>Barrett, S.D.</creator><creator>Graham, H.K.</creator><creator>Derby, B.</creator><creator>Sherratt, M.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141101</creationdate><title>Localized micro- and nano-scale remodelling in the diabetic aorta</title><author>Akhtar, R. ; Cruickshank, J.K. ; Zhao, X. ; Walton, L.A. ; Gardiner, N.J. ; Barrett, S.D. ; Graham, H.K. ; Derby, B. ; Sherratt, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-612bada5b308fbea79fa95f9d0d50df7cb6566a3d0bb1ef198de661686c733d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Aorta - pathology</topic><topic>Aorta - physiopathology</topic><topic>Arterial stiffening</topic><topic>Blood Glucose - metabolism</topic><topic>Body Weight</topic><topic>Collagen - metabolism</topic><topic>Diabetes Mellitus - blood</topic><topic>Diabetes Mellitus - physiopathology</topic><topic>Extracellular matrix</topic><topic>Fibrillin microfibrils</topic><topic>Fibrillins</topic><topic>Gelatinases - metabolism</topic><topic>Glycosylation</topic><topic>Male</topic><topic>Mechanical properties</topic><topic>Microfibrils - ultrastructure</topic><topic>Microfilament Proteins - metabolism</topic><topic>Nanotechnology</topic><topic>Rats, Wistar</topic><topic>Sound</topic><topic>Tunica Media - pathology</topic><topic>Type 1 diabetes</topic><topic>Vascular Remodeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akhtar, R.</creatorcontrib><creatorcontrib>Cruickshank, J.K.</creatorcontrib><creatorcontrib>Zhao, X.</creatorcontrib><creatorcontrib>Walton, L.A.</creatorcontrib><creatorcontrib>Gardiner, N.J.</creatorcontrib><creatorcontrib>Barrett, S.D.</creatorcontrib><creatorcontrib>Graham, H.K.</creatorcontrib><creatorcontrib>Derby, B.</creatorcontrib><creatorcontrib>Sherratt, M.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akhtar, R.</au><au>Cruickshank, J.K.</au><au>Zhao, X.</au><au>Walton, L.A.</au><au>Gardiner, N.J.</au><au>Barrett, S.D.</au><au>Graham, H.K.</au><au>Derby, B.</au><au>Sherratt, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized micro- and nano-scale remodelling in the diabetic aorta</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>10</volume><issue>11</issue><spage>4843</spage><epage>4851</epage><pages>4843-4851</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted]
Diabetes is strongly associated with cardiovascular disease, but the mechanisms, structural and biomechanical consequences of aberrant blood vessel remodelling remain poorly defined. Using an experimental (streptozotocin, STZ) rat model of diabetes, we hypothesized that diabetes enhances extracellular protease activity in the aorta and induces morphological, compositional and localized micromechanical tissue remodelling. We found that the medial aortic layer underwent significant thickening in diabetic animals but without significant changes in collagen or elastin (abundance). Scanning acoustic microscopy demonstrated that such tissue remodelling was associated with a significant decrease in acoustic wave speed (an indicator of reduced material stiffness) in the inter-lamellar spaces of the vessel wall. This index of decreased stiffness was also linked to increased extracellular protease activity (assessed by semi-quantitative in situ gelatin zymography). Such a proteolytically active environment may affect the macromolecular structure of long-lived extracellular matrix molecules. To test this hypothesis, we also characterized the effects of diabetes on the ultrastructure of an important elastic fibre component: the fibrillin microfibril. Using size exclusion chromatography and atomic force microscopy, we isolated and imaged microfibrils from both healthy and diabetic aortas. Microfibrils derived from diabetic tissues were fragmented, morphologically disrupted and weakened (as assessed following molecular combing). These structural and functional abnormalities were not replicated by in vitro glycation. Our data suggest that proteolysis may be a key driver of localized mechanical change in the inter-lamellar space of diabetic rat aortas and that structural proteins (such as fibrillin microfbrils) may be biomarkers of diabetes induced damage.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25014552</pmid><doi>10.1016/j.actbio.2014.07.001</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2014-11, Vol.10 (11), p.4843-4851 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4199142 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Aorta - pathology Aorta - physiopathology Arterial stiffening Blood Glucose - metabolism Body Weight Collagen - metabolism Diabetes Mellitus - blood Diabetes Mellitus - physiopathology Extracellular matrix Fibrillin microfibrils Fibrillins Gelatinases - metabolism Glycosylation Male Mechanical properties Microfibrils - ultrastructure Microfilament Proteins - metabolism Nanotechnology Rats, Wistar Sound Tunica Media - pathology Type 1 diabetes Vascular Remodeling |
title | Localized micro- and nano-scale remodelling in the diabetic aorta |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20micro-%20and%20nano-scale%20remodelling%20in%20the%20diabetic%20aorta&rft.jtitle=Acta%20biomaterialia&rft.au=Akhtar,%20R.&rft.date=2014-11-01&rft.volume=10&rft.issue=11&rft.spage=4843&rft.epage=4851&rft.pages=4843-4851&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2014.07.001&rft_dat=%3Cproquest_pubme%3E1609101574%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609101574&rft_id=info:pmid/25014552&rft_els_id=S1742706114002955&rfr_iscdi=true |