Bigger data, collaborative tools and the future of predictive drug discovery
Over the past decade we have seen a growth in the provision of chemistry data and cheminformatics tools as either free websites or software as a service commercial offerings. These have transformed how we find molecule-related data and use such tools in our research. There have also been efforts to...
Gespeichert in:
Veröffentlicht in: | Journal of computer-aided molecular design 2014-10, Vol.28 (10), p.997-1008 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1008 |
---|---|
container_issue | 10 |
container_start_page | 997 |
container_title | Journal of computer-aided molecular design |
container_volume | 28 |
creator | Ekins, Sean Clark, Alex M. Swamidass, S. Joshua Litterman, Nadia Williams, Antony J. |
description | Over the past decade we have seen a growth in the provision of chemistry data and cheminformatics tools as either free websites or software as a service commercial offerings. These have transformed how we find molecule-related data and use such tools in our research. There have also been efforts to improve collaboration between researchers either openly or through secure transactions using commercial tools. A major challenge in the future will be how such databases and software approaches handle larger amounts of data as it accumulates from high throughput screening and enables the user to draw insights, enable predictions and move projects forward. We now discuss how information from some drug discovery datasets can be made more accessible and how privacy of data should not overwhelm the desire to share it at an appropriate time with collaborators. We also discuss additional software tools that could be made available and provide our thoughts on the future of predictive drug discovery in this age of big data. We use some examples from our own research on neglected diseases, collaborations, mobile apps and algorithm development to illustrate these ideas. |
doi_str_mv | 10.1007/s10822-014-9762-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4198464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629340988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-4f9df84b048a1ceb6aadefc66d92f0690cc3b934e730b1b3bfc531c4186178733</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhi0EoqHwA7ggS1w4sGXGdrz2BalUfFSKxAUkbpbXH-lWm3WwdyPl3-M0pSpIFZx8mGfe8TvzEvIS4QwB2ncFQTHWAIpGt5I1-0dkgcuWN0Iv8TFZgGbQyKX4cUKelXINtUdLeEpOmNCCI1cLsvrQr9chU28n-5a6NAy2S9lO_S7QKaWhUDt6Ol0FGudpzoGmSLc5-N7dID7Pa-r74tIu5P1z8iTaoYQXt-8p-f7p47eLL83q6-fLi_NV42TLpkZE7aMSHQhl0YVOWutDdFJ6zSJIDc7xTnMRWg4ddryLbsnRCVQSW9VyfkreH3W3c7cJ3oVxynYw29xvbN6bZHvzZ2Xsr8w67YxArYQUVeDNrUBOP-dQJrOpHkI1P4Y0F4N1MuiWCflvVLL6VdBK_QeKjGmoBir6-i_0Os15rEs7UKB0vQ6rFB4pl1MpOcQ7iwjmkABzTICpCTCHBJh97Xl1fzd3Hb9PXgF2BEotjfX290Y_qPoLEH28QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1610893132</pqid></control><display><type>article</type><title>Bigger data, collaborative tools and the future of predictive drug discovery</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ekins, Sean ; Clark, Alex M. ; Swamidass, S. Joshua ; Litterman, Nadia ; Williams, Antony J.</creator><creatorcontrib>Ekins, Sean ; Clark, Alex M. ; Swamidass, S. Joshua ; Litterman, Nadia ; Williams, Antony J.</creatorcontrib><description>Over the past decade we have seen a growth in the provision of chemistry data and cheminformatics tools as either free websites or software as a service commercial offerings. These have transformed how we find molecule-related data and use such tools in our research. There have also been efforts to improve collaboration between researchers either openly or through secure transactions using commercial tools. A major challenge in the future will be how such databases and software approaches handle larger amounts of data as it accumulates from high throughput screening and enables the user to draw insights, enable predictions and move projects forward. We now discuss how information from some drug discovery datasets can be made more accessible and how privacy of data should not overwhelm the desire to share it at an appropriate time with collaborators. We also discuss additional software tools that could be made available and provide our thoughts on the future of predictive drug discovery in this age of big data. We use some examples from our own research on neglected diseases, collaborations, mobile apps and algorithm development to illustrate these ideas.</description><identifier>ISSN: 0920-654X</identifier><identifier>EISSN: 1573-4951</identifier><identifier>DOI: 10.1007/s10822-014-9762-y</identifier><identifier>PMID: 24943138</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accessibility ; Animal Anatomy ; Applications programs ; Chemistry ; Chemistry and Materials Science ; Computer aided design ; Computer Applications in Chemistry ; Computer programs ; Cooperative Behavior ; Databases, Factual ; Drug Discovery - methods ; Drugs ; Histology ; Humans ; Information management ; Mobile communication systems ; Morphology ; Pharmaceutical sciences ; Physical Chemistry ; Quantitative Structure-Activity Relationship ; Rare Diseases ; Software ; Software-as-a-service ; Statistics as Topic - methods</subject><ispartof>Journal of computer-aided molecular design, 2014-10, Vol.28 (10), p.997-1008</ispartof><rights>Springer International Publishing Switzerland 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-4f9df84b048a1ceb6aadefc66d92f0690cc3b934e730b1b3bfc531c4186178733</citedby><cites>FETCH-LOGICAL-c672t-4f9df84b048a1ceb6aadefc66d92f0690cc3b934e730b1b3bfc531c4186178733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10822-014-9762-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10822-014-9762-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24943138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ekins, Sean</creatorcontrib><creatorcontrib>Clark, Alex M.</creatorcontrib><creatorcontrib>Swamidass, S. Joshua</creatorcontrib><creatorcontrib>Litterman, Nadia</creatorcontrib><creatorcontrib>Williams, Antony J.</creatorcontrib><title>Bigger data, collaborative tools and the future of predictive drug discovery</title><title>Journal of computer-aided molecular design</title><addtitle>J Comput Aided Mol Des</addtitle><addtitle>J Comput Aided Mol Des</addtitle><description>Over the past decade we have seen a growth in the provision of chemistry data and cheminformatics tools as either free websites or software as a service commercial offerings. These have transformed how we find molecule-related data and use such tools in our research. There have also been efforts to improve collaboration between researchers either openly or through secure transactions using commercial tools. A major challenge in the future will be how such databases and software approaches handle larger amounts of data as it accumulates from high throughput screening and enables the user to draw insights, enable predictions and move projects forward. We now discuss how information from some drug discovery datasets can be made more accessible and how privacy of data should not overwhelm the desire to share it at an appropriate time with collaborators. We also discuss additional software tools that could be made available and provide our thoughts on the future of predictive drug discovery in this age of big data. We use some examples from our own research on neglected diseases, collaborations, mobile apps and algorithm development to illustrate these ideas.</description><subject>Accessibility</subject><subject>Animal Anatomy</subject><subject>Applications programs</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer aided design</subject><subject>Computer Applications in Chemistry</subject><subject>Computer programs</subject><subject>Cooperative Behavior</subject><subject>Databases, Factual</subject><subject>Drug Discovery - methods</subject><subject>Drugs</subject><subject>Histology</subject><subject>Humans</subject><subject>Information management</subject><subject>Mobile communication systems</subject><subject>Morphology</subject><subject>Pharmaceutical sciences</subject><subject>Physical Chemistry</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Rare Diseases</subject><subject>Software</subject><subject>Software-as-a-service</subject><subject>Statistics as Topic - methods</subject><issn>0920-654X</issn><issn>1573-4951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk1vEzEQhi0EoqHwA7ggS1w4sGXGdrz2BalUfFSKxAUkbpbXH-lWm3WwdyPl3-M0pSpIFZx8mGfe8TvzEvIS4QwB2ncFQTHWAIpGt5I1-0dkgcuWN0Iv8TFZgGbQyKX4cUKelXINtUdLeEpOmNCCI1cLsvrQr9chU28n-5a6NAy2S9lO_S7QKaWhUDt6Ol0FGudpzoGmSLc5-N7dID7Pa-r74tIu5P1z8iTaoYQXt-8p-f7p47eLL83q6-fLi_NV42TLpkZE7aMSHQhl0YVOWutDdFJ6zSJIDc7xTnMRWg4ddryLbsnRCVQSW9VyfkreH3W3c7cJ3oVxynYw29xvbN6bZHvzZ2Xsr8w67YxArYQUVeDNrUBOP-dQJrOpHkI1P4Y0F4N1MuiWCflvVLL6VdBK_QeKjGmoBir6-i_0Os15rEs7UKB0vQ6rFB4pl1MpOcQ7iwjmkABzTICpCTCHBJh97Xl1fzd3Hb9PXgF2BEotjfX290Y_qPoLEH28QQ</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Ekins, Sean</creator><creator>Clark, Alex M.</creator><creator>Swamidass, S. Joshua</creator><creator>Litterman, Nadia</creator><creator>Williams, Antony J.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141001</creationdate><title>Bigger data, collaborative tools and the future of predictive drug discovery</title><author>Ekins, Sean ; Clark, Alex M. ; Swamidass, S. Joshua ; Litterman, Nadia ; Williams, Antony J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-4f9df84b048a1ceb6aadefc66d92f0690cc3b934e730b1b3bfc531c4186178733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accessibility</topic><topic>Animal Anatomy</topic><topic>Applications programs</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer aided design</topic><topic>Computer Applications in Chemistry</topic><topic>Computer programs</topic><topic>Cooperative Behavior</topic><topic>Databases, Factual</topic><topic>Drug Discovery - methods</topic><topic>Drugs</topic><topic>Histology</topic><topic>Humans</topic><topic>Information management</topic><topic>Mobile communication systems</topic><topic>Morphology</topic><topic>Pharmaceutical sciences</topic><topic>Physical Chemistry</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Rare Diseases</topic><topic>Software</topic><topic>Software-as-a-service</topic><topic>Statistics as Topic - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekins, Sean</creatorcontrib><creatorcontrib>Clark, Alex M.</creatorcontrib><creatorcontrib>Swamidass, S. Joshua</creatorcontrib><creatorcontrib>Litterman, Nadia</creatorcontrib><creatorcontrib>Williams, Antony J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computer-aided molecular design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekins, Sean</au><au>Clark, Alex M.</au><au>Swamidass, S. Joshua</au><au>Litterman, Nadia</au><au>Williams, Antony J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bigger data, collaborative tools and the future of predictive drug discovery</atitle><jtitle>Journal of computer-aided molecular design</jtitle><stitle>J Comput Aided Mol Des</stitle><addtitle>J Comput Aided Mol Des</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>28</volume><issue>10</issue><spage>997</spage><epage>1008</epage><pages>997-1008</pages><issn>0920-654X</issn><eissn>1573-4951</eissn><abstract>Over the past decade we have seen a growth in the provision of chemistry data and cheminformatics tools as either free websites or software as a service commercial offerings. These have transformed how we find molecule-related data and use such tools in our research. There have also been efforts to improve collaboration between researchers either openly or through secure transactions using commercial tools. A major challenge in the future will be how such databases and software approaches handle larger amounts of data as it accumulates from high throughput screening and enables the user to draw insights, enable predictions and move projects forward. We now discuss how information from some drug discovery datasets can be made more accessible and how privacy of data should not overwhelm the desire to share it at an appropriate time with collaborators. We also discuss additional software tools that could be made available and provide our thoughts on the future of predictive drug discovery in this age of big data. We use some examples from our own research on neglected diseases, collaborations, mobile apps and algorithm development to illustrate these ideas.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>24943138</pmid><doi>10.1007/s10822-014-9762-y</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-654X |
ispartof | Journal of computer-aided molecular design, 2014-10, Vol.28 (10), p.997-1008 |
issn | 0920-654X 1573-4951 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4198464 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Accessibility Animal Anatomy Applications programs Chemistry Chemistry and Materials Science Computer aided design Computer Applications in Chemistry Computer programs Cooperative Behavior Databases, Factual Drug Discovery - methods Drugs Histology Humans Information management Mobile communication systems Morphology Pharmaceutical sciences Physical Chemistry Quantitative Structure-Activity Relationship Rare Diseases Software Software-as-a-service Statistics as Topic - methods |
title | Bigger data, collaborative tools and the future of predictive drug discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bigger%20data,%20collaborative%20tools%20and%20the%20future%20of%20predictive%20drug%20discovery&rft.jtitle=Journal%20of%20computer-aided%20molecular%20design&rft.au=Ekins,%20Sean&rft.date=2014-10-01&rft.volume=28&rft.issue=10&rft.spage=997&rft.epage=1008&rft.pages=997-1008&rft.issn=0920-654X&rft.eissn=1573-4951&rft_id=info:doi/10.1007/s10822-014-9762-y&rft_dat=%3Cproquest_pubme%3E1629340988%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1610893132&rft_id=info:pmid/24943138&rfr_iscdi=true |