Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils

Eukaryotic topoisomerases I (topo I) and II (topo II) relax the positive (+) and negative (−) DNA torsional stress (TS) generated ahead and behind the transcription machinery. It is unknown how this DNA relaxation activity is regulated and whether (+) and (−)TS are reduced at similar rates. Here, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2014-07, Vol.33 (13), p.1492-1501
Hauptverfasser: Fernández, Xavier, Díaz-Ingelmo, Ofelia, Martínez-García, Belén, Roca, Joaquim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1501
container_issue 13
container_start_page 1492
container_title The EMBO journal
container_volume 33
creator Fernández, Xavier
Díaz-Ingelmo, Ofelia
Martínez-García, Belén
Roca, Joaquim
description Eukaryotic topoisomerases I (topo I) and II (topo II) relax the positive (+) and negative (−) DNA torsional stress (TS) generated ahead and behind the transcription machinery. It is unknown how this DNA relaxation activity is regulated and whether (+) and (−)TS are reduced at similar rates. Here, we used yeast circular minichromosomes to conduct the first comparative analysis of topo I and topo II activities in relaxing chromatin under (+) and (−)TS. We observed that, while topo I relaxed (+) and (−)TS with similar efficiency, topo II was more proficient and relaxed (+)TS more quickly than (−)TS. Accordingly, we found that the relaxation rate of (+)TS by endogenous topoisomerases largely surpassed that of (−)TS. We propose a model of how distinct conformations of chromatin under (+) and (−)TS may produce this unbalanced relaxation of DNA. We postulate that, while quick relaxation of (+)TS may facilitate the progression of RNA and DNA polymerases, slow relaxation of (−)TS may serve to favor DNA unwinding and other structural transitions at specific regions often required for genomic transactions. Synopsis Comparative in vivo analyses show that twin domains of positive (+) and negative (−) DNA torsional stress, which simultaneously arise during DNA transcription, are not relaxed at the same rate in vivo . These findings suggest that the overall negative supercoiling status of native chromatin stems from differential relaxation activities of topoisomerases I and II. Chromatin delays the relaxation of both positive and negative DNA torsional stress by topoisomerase I. Chromatin favors quick relaxation of positive DNA supercoils by topoisomerase II. Unbalanced relaxation of positive supercoils may facilitate DNA unwinding in eukaryotic chromatin. Graphical Abstract Differential (+) and (−) torsional stress relaxation by topoisomerases I and II contributes to the overall negative supercoiling status of native chromatin, which may facilitate transactions such as DNA unwinding.
doi_str_mv 10.15252/embj.201488091
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4194091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1542650243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5511-36f75be50c05f4d57c4c3fcf535d4e4db0a96123f4a12fe0476c5b29d41e0c523</originalsourceid><addsrcrecordid>eNqFkc2P0zAQxS0EYsvCmRuKxIVLdm3Hkw8OSEvZXYqWcqDA0XKcSeuSxMFOyva_x5ClKkiIkyX7957fzCPkKaNnDDjwc2zL7RmnTOQ5Ldg9MmMipTGnGdwnM8pTFguWFyfkkfdbSinkGXtITrjIoSjSbEY2842zrRpMFzlcj40a0EdvlhfRYJ03tlNNhB269T7aGRUue2u8bdEpj9FiEbdYmSCpgrhRt8HGdpGto956M5gdRn7s0WlrGv-YPKhV4_HJ3XlKPl1druZv45sP14v5xU2sARiLk7TOoESgmkItKsi00Emta0igEiiqkqoiZTyphWK8RiqyVEPJi0owpBp4ckpeTb79WIZ0GrvBqUb2zrTK7aVVRv750pmNXNudFKwQYYXB4MWdgbPfRvSDbI3X2DSqQzt6yUDwFCgXSUCf_4Vu7ejCzgKVAeSQZDQN1PlEaWe9d1gfwjAqf7Uof7YoDy0GxbPjGQ7879oC8HICvpsG9__zk5fvX787dqeT2Addt0Z3lPqfgeJJYvyAt4f_lPsqQ5oM5JfltcyvPi9pvvooV8kPGDnKzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755853706</pqid></control><display><type>article</type><title>Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils</title><source>Springer Nature OA Free Journals</source><creator>Fernández, Xavier ; Díaz-Ingelmo, Ofelia ; Martínez-García, Belén ; Roca, Joaquim</creator><creatorcontrib>Fernández, Xavier ; Díaz-Ingelmo, Ofelia ; Martínez-García, Belén ; Roca, Joaquim</creatorcontrib><description>Eukaryotic topoisomerases I (topo I) and II (topo II) relax the positive (+) and negative (−) DNA torsional stress (TS) generated ahead and behind the transcription machinery. It is unknown how this DNA relaxation activity is regulated and whether (+) and (−)TS are reduced at similar rates. Here, we used yeast circular minichromosomes to conduct the first comparative analysis of topo I and topo II activities in relaxing chromatin under (+) and (−)TS. We observed that, while topo I relaxed (+) and (−)TS with similar efficiency, topo II was more proficient and relaxed (+)TS more quickly than (−)TS. Accordingly, we found that the relaxation rate of (+)TS by endogenous topoisomerases largely surpassed that of (−)TS. We propose a model of how distinct conformations of chromatin under (+) and (−)TS may produce this unbalanced relaxation of DNA. We postulate that, while quick relaxation of (+)TS may facilitate the progression of RNA and DNA polymerases, slow relaxation of (−)TS may serve to favor DNA unwinding and other structural transitions at specific regions often required for genomic transactions. Synopsis Comparative in vivo analyses show that twin domains of positive (+) and negative (−) DNA torsional stress, which simultaneously arise during DNA transcription, are not relaxed at the same rate in vivo . These findings suggest that the overall negative supercoiling status of native chromatin stems from differential relaxation activities of topoisomerases I and II. Chromatin delays the relaxation of both positive and negative DNA torsional stress by topoisomerase I. Chromatin favors quick relaxation of positive DNA supercoils by topoisomerase II. Unbalanced relaxation of positive supercoils may facilitate DNA unwinding in eukaryotic chromatin. Graphical Abstract Differential (+) and (−) torsional stress relaxation by topoisomerases I and II contributes to the overall negative supercoiling status of native chromatin, which may facilitate transactions such as DNA unwinding.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201488091</identifier><identifier>PMID: 24859967</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Chromatin ; Chromosomes, Fungal - genetics ; Chromosomes, Fungal - metabolism ; Deoxyribonucleic acid ; DNA ; DNA Topoisomerases, Type II - genetics ; DNA Topoisomerases, Type II - metabolism ; DNA, Fungal - genetics ; DNA, Fungal - metabolism ; DNA, Superhelical - genetics ; DNA, Superhelical - metabolism ; EMBO09 ; EMBO13 ; Enzymes ; Eukaryotes ; Gene Expression Regulation, Fungal ; Genomics ; gyrase ; nucleosome ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins ; supercoiling ; transcription ; yeast ; Yeasts</subject><ispartof>The EMBO journal, 2014-07, Vol.33 (13), p.1492-1501</ispartof><rights>The Authors 2014</rights><rights>2014 The Authors</rights><rights>2014 The Authors.</rights><rights>2014 EMBO</rights><rights>2014 The Authors 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5511-36f75be50c05f4d57c4c3fcf535d4e4db0a96123f4a12fe0476c5b29d41e0c523</citedby><cites>FETCH-LOGICAL-c5511-36f75be50c05f4d57c4c3fcf535d4e4db0a96123f4a12fe0476c5b29d41e0c523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4194091/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4194091/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.201488091$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24859967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernández, Xavier</creatorcontrib><creatorcontrib>Díaz-Ingelmo, Ofelia</creatorcontrib><creatorcontrib>Martínez-García, Belén</creatorcontrib><creatorcontrib>Roca, Joaquim</creatorcontrib><title>Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Eukaryotic topoisomerases I (topo I) and II (topo II) relax the positive (+) and negative (−) DNA torsional stress (TS) generated ahead and behind the transcription machinery. It is unknown how this DNA relaxation activity is regulated and whether (+) and (−)TS are reduced at similar rates. Here, we used yeast circular minichromosomes to conduct the first comparative analysis of topo I and topo II activities in relaxing chromatin under (+) and (−)TS. We observed that, while topo I relaxed (+) and (−)TS with similar efficiency, topo II was more proficient and relaxed (+)TS more quickly than (−)TS. Accordingly, we found that the relaxation rate of (+)TS by endogenous topoisomerases largely surpassed that of (−)TS. We propose a model of how distinct conformations of chromatin under (+) and (−)TS may produce this unbalanced relaxation of DNA. We postulate that, while quick relaxation of (+)TS may facilitate the progression of RNA and DNA polymerases, slow relaxation of (−)TS may serve to favor DNA unwinding and other structural transitions at specific regions often required for genomic transactions. Synopsis Comparative in vivo analyses show that twin domains of positive (+) and negative (−) DNA torsional stress, which simultaneously arise during DNA transcription, are not relaxed at the same rate in vivo . These findings suggest that the overall negative supercoiling status of native chromatin stems from differential relaxation activities of topoisomerases I and II. Chromatin delays the relaxation of both positive and negative DNA torsional stress by topoisomerase I. Chromatin favors quick relaxation of positive DNA supercoils by topoisomerase II. Unbalanced relaxation of positive supercoils may facilitate DNA unwinding in eukaryotic chromatin. Graphical Abstract Differential (+) and (−) torsional stress relaxation by topoisomerases I and II contributes to the overall negative supercoiling status of native chromatin, which may facilitate transactions such as DNA unwinding.</description><subject>Chromatin</subject><subject>Chromosomes, Fungal - genetics</subject><subject>Chromosomes, Fungal - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Topoisomerases, Type II - genetics</subject><subject>DNA Topoisomerases, Type II - metabolism</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Fungal - metabolism</subject><subject>DNA, Superhelical - genetics</subject><subject>DNA, Superhelical - metabolism</subject><subject>EMBO09</subject><subject>EMBO13</subject><subject>Enzymes</subject><subject>Eukaryotes</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genomics</subject><subject>gyrase</subject><subject>nucleosome</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>supercoiling</subject><subject>transcription</subject><subject>yeast</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2P0zAQxS0EYsvCmRuKxIVLdm3Hkw8OSEvZXYqWcqDA0XKcSeuSxMFOyva_x5ClKkiIkyX7957fzCPkKaNnDDjwc2zL7RmnTOQ5Ldg9MmMipTGnGdwnM8pTFguWFyfkkfdbSinkGXtITrjIoSjSbEY2842zrRpMFzlcj40a0EdvlhfRYJ03tlNNhB269T7aGRUue2u8bdEpj9FiEbdYmSCpgrhRt8HGdpGto956M5gdRn7s0WlrGv-YPKhV4_HJ3XlKPl1druZv45sP14v5xU2sARiLk7TOoESgmkItKsi00Emta0igEiiqkqoiZTyphWK8RiqyVEPJi0owpBp4ckpeTb79WIZ0GrvBqUb2zrTK7aVVRv750pmNXNudFKwQYYXB4MWdgbPfRvSDbI3X2DSqQzt6yUDwFCgXSUCf_4Vu7ejCzgKVAeSQZDQN1PlEaWe9d1gfwjAqf7Uof7YoDy0GxbPjGQ7879oC8HICvpsG9__zk5fvX787dqeT2Addt0Z3lPqfgeJJYvyAt4f_lPsqQ5oM5JfltcyvPi9pvvooV8kPGDnKzw</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Fernández, Xavier</creator><creator>Díaz-Ingelmo, Ofelia</creator><creator>Martínez-García, Belén</creator><creator>Roca, Joaquim</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>BlackWell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140701</creationdate><title>Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils</title><author>Fernández, Xavier ; Díaz-Ingelmo, Ofelia ; Martínez-García, Belén ; Roca, Joaquim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5511-36f75be50c05f4d57c4c3fcf535d4e4db0a96123f4a12fe0476c5b29d41e0c523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chromatin</topic><topic>Chromosomes, Fungal - genetics</topic><topic>Chromosomes, Fungal - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Topoisomerases, Type II - genetics</topic><topic>DNA Topoisomerases, Type II - metabolism</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Fungal - metabolism</topic><topic>DNA, Superhelical - genetics</topic><topic>DNA, Superhelical - metabolism</topic><topic>EMBO09</topic><topic>EMBO13</topic><topic>Enzymes</topic><topic>Eukaryotes</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genomics</topic><topic>gyrase</topic><topic>nucleosome</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>supercoiling</topic><topic>transcription</topic><topic>yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández, Xavier</creatorcontrib><creatorcontrib>Díaz-Ingelmo, Ofelia</creatorcontrib><creatorcontrib>Martínez-García, Belén</creatorcontrib><creatorcontrib>Roca, Joaquim</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fernández, Xavier</au><au>Díaz-Ingelmo, Ofelia</au><au>Martínez-García, Belén</au><au>Roca, Joaquim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>33</volume><issue>13</issue><spage>1492</spage><epage>1501</epage><pages>1492-1501</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Eukaryotic topoisomerases I (topo I) and II (topo II) relax the positive (+) and negative (−) DNA torsional stress (TS) generated ahead and behind the transcription machinery. It is unknown how this DNA relaxation activity is regulated and whether (+) and (−)TS are reduced at similar rates. Here, we used yeast circular minichromosomes to conduct the first comparative analysis of topo I and topo II activities in relaxing chromatin under (+) and (−)TS. We observed that, while topo I relaxed (+) and (−)TS with similar efficiency, topo II was more proficient and relaxed (+)TS more quickly than (−)TS. Accordingly, we found that the relaxation rate of (+)TS by endogenous topoisomerases largely surpassed that of (−)TS. We propose a model of how distinct conformations of chromatin under (+) and (−)TS may produce this unbalanced relaxation of DNA. We postulate that, while quick relaxation of (+)TS may facilitate the progression of RNA and DNA polymerases, slow relaxation of (−)TS may serve to favor DNA unwinding and other structural transitions at specific regions often required for genomic transactions. Synopsis Comparative in vivo analyses show that twin domains of positive (+) and negative (−) DNA torsional stress, which simultaneously arise during DNA transcription, are not relaxed at the same rate in vivo . These findings suggest that the overall negative supercoiling status of native chromatin stems from differential relaxation activities of topoisomerases I and II. Chromatin delays the relaxation of both positive and negative DNA torsional stress by topoisomerase I. Chromatin favors quick relaxation of positive DNA supercoils by topoisomerase II. Unbalanced relaxation of positive supercoils may facilitate DNA unwinding in eukaryotic chromatin. Graphical Abstract Differential (+) and (−) torsional stress relaxation by topoisomerases I and II contributes to the overall negative supercoiling status of native chromatin, which may facilitate transactions such as DNA unwinding.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>24859967</pmid><doi>10.15252/embj.201488091</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2014-07, Vol.33 (13), p.1492-1501
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4194091
source Springer Nature OA Free Journals
subjects Chromatin
Chromosomes, Fungal - genetics
Chromosomes, Fungal - metabolism
Deoxyribonucleic acid
DNA
DNA Topoisomerases, Type II - genetics
DNA Topoisomerases, Type II - metabolism
DNA, Fungal - genetics
DNA, Fungal - metabolism
DNA, Superhelical - genetics
DNA, Superhelical - metabolism
EMBO09
EMBO13
Enzymes
Eukaryotes
Gene Expression Regulation, Fungal
Genomics
gyrase
nucleosome
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins
supercoiling
transcription
yeast
Yeasts
title Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatin%20regulates%20DNA%20torsional%20energy%20via%20topoisomerase%20II-mediated%20relaxation%20of%20positive%20supercoils&rft.jtitle=The%20EMBO%20journal&rft.au=Fern%C3%A1ndez,%20Xavier&rft.date=2014-07-01&rft.volume=33&rft.issue=13&rft.spage=1492&rft.epage=1501&rft.pages=1492-1501&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.15252/embj.201488091&rft_dat=%3Cproquest_C6C%3E1542650243%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1755853706&rft_id=info:pmid/24859967&rfr_iscdi=true