The Diabetes Drug Target MitoNEET Governs a Novel Trafficking Pathway to Rebuild an Fe-S Cluster into Cytosolic Aconitase/Iron Regulatory Protein 1

In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2014-10, Vol.289 (41), p.28070-28086
Hauptverfasser: Ferecatu, Ioana, Gonçalves, Sergio, Golinelli-Cohen, Marie-Pierre, Clémancey, Martin, Martelli, Alain, Riquier, Sylvie, Guittet, Eric, Latour, Jean-Marc, Puccio, Hélène, Drapier, Jean-Claude, Lescop, Ewen, Bouton, Cécile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28086
container_issue 41
container_start_page 28070
container_title The Journal of biological chemistry
container_volume 289
creator Ferecatu, Ioana
Gonçalves, Sergio
Golinelli-Cohen, Marie-Pierre
Clémancey, Martin
Martelli, Alain
Riquier, Sylvie
Guittet, Eric
Latour, Jean-Marc
Puccio, Hélène
Drapier, Jean-Claude
Lescop, Ewen
Bouton, Cécile
description In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis.
doi_str_mv 10.1074/jbc.M114.548438
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4192461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820370666</els_id><sourcerecordid>S0021925820370666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-9e3168dd4789bcecad5b133e13a40872b6ed52015258a1000bc968b8d77290d53</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS0EokvhzA35yiG7dmInzgVptd3-kbalgiBxsxx7NuuSxpXtLNrPwRfGq7QVIOHLWJ7fe_LMQ-g9JXNKKra4a_X8mlI250ywQrxAM0pEkRWcfn-JZoTkNKtzLk7QmxDuSDqspq_RSc4JzUtOZuhXswN8ZlULEQI-82OHG-U7iPjaRnezXjf4wu3BDwErfJNuPW682m6t_mGHDt-quPupDjg6_AXa0fYGqwGfQ_YVr_oxRPDYDqm5OkQXXG81Xmo32KgCLK68G5KqG3sVnT_gW-8i2AHTt-jVVvUB3j3WU_TtfN2sLrPN54ur1XKTaVZVMauhoKUwhlWibjVoZXhLiwJooRgRVd6WYHhOKE8LUDTN3uq6FK0wVZXXxPDiFH2afB_G9h6MhiF61csHb--VP0inrPy7M9id7NxeMlrnrKTJ4ONksPtHdrncyOMboaIqOKn3R3Yxsdq7EDxsnwWUyGOWMmUpj1nKKcuk-PDn9575p_ASUE8ApCXtLXgZtIVBg7EedJTG2f-a_waVwq7N</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Diabetes Drug Target MitoNEET Governs a Novel Trafficking Pathway to Rebuild an Fe-S Cluster into Cytosolic Aconitase/Iron Regulatory Protein 1</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ferecatu, Ioana ; Gonçalves, Sergio ; Golinelli-Cohen, Marie-Pierre ; Clémancey, Martin ; Martelli, Alain ; Riquier, Sylvie ; Guittet, Eric ; Latour, Jean-Marc ; Puccio, Hélène ; Drapier, Jean-Claude ; Lescop, Ewen ; Bouton, Cécile</creator><creatorcontrib>Ferecatu, Ioana ; Gonçalves, Sergio ; Golinelli-Cohen, Marie-Pierre ; Clémancey, Martin ; Martelli, Alain ; Riquier, Sylvie ; Guittet, Eric ; Latour, Jean-Marc ; Puccio, Hélène ; Drapier, Jean-Claude ; Lescop, Ewen ; Bouton, Cécile</creatorcontrib><description>In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.548438</identifier><identifier>PMID: 25012650</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Biology ; Chemical Sciences ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Expression Regulation ; HeLa Cells ; Hep G2 Cells ; Homeostasis ; Humans ; Hydrogen Peroxide - chemistry ; Iron - metabolism ; Iron Regulatory Protein 1 - chemistry ; Iron Regulatory Protein 1 - genetics ; Iron Regulatory Protein 1 - metabolism ; Life Sciences ; Mice ; Mice, Transgenic ; Mitochondria - chemistry ; Mitochondria - metabolism ; Mitochondrial Membrane Transport Proteins - chemistry ; Mitochondrial Membrane Transport Proteins - genetics ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Membranes - chemistry ; Mitochondrial Membranes - metabolism ; Mitochondrial Proteins - chemistry ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Nitric Oxide - chemistry ; Organic chemistry ; Oxidation-Reduction ; Protein Folding ; Protein Stability ; Protein Structure, Tertiary ; Protein Transport ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Signal Transduction</subject><ispartof>The Journal of biological chemistry, 2014-10, Vol.289 (41), p.28070-28086</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-9e3168dd4789bcecad5b133e13a40872b6ed52015258a1000bc968b8d77290d53</citedby><cites>FETCH-LOGICAL-c477t-9e3168dd4789bcecad5b133e13a40872b6ed52015258a1000bc968b8d77290d53</cites><orcidid>0000-0002-6738-8631 ; 0000-0001-6088-3026 ; 0000-0001-6842-9506 ; 0000-0003-4711-2248 ; 0000-0002-2623-9365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192461/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192461/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25012650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01873509$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferecatu, Ioana</creatorcontrib><creatorcontrib>Gonçalves, Sergio</creatorcontrib><creatorcontrib>Golinelli-Cohen, Marie-Pierre</creatorcontrib><creatorcontrib>Clémancey, Martin</creatorcontrib><creatorcontrib>Martelli, Alain</creatorcontrib><creatorcontrib>Riquier, Sylvie</creatorcontrib><creatorcontrib>Guittet, Eric</creatorcontrib><creatorcontrib>Latour, Jean-Marc</creatorcontrib><creatorcontrib>Puccio, Hélène</creatorcontrib><creatorcontrib>Drapier, Jean-Claude</creatorcontrib><creatorcontrib>Lescop, Ewen</creatorcontrib><creatorcontrib>Bouton, Cécile</creatorcontrib><title>The Diabetes Drug Target MitoNEET Governs a Novel Trafficking Pathway to Rebuild an Fe-S Cluster into Cytosolic Aconitase/Iron Regulatory Protein 1</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis.</description><subject>Animals</subject><subject>Cell Biology</subject><subject>Chemical Sciences</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression Regulation</subject><subject>HeLa Cells</subject><subject>Hep G2 Cells</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Iron - metabolism</subject><subject>Iron Regulatory Protein 1 - chemistry</subject><subject>Iron Regulatory Protein 1 - genetics</subject><subject>Iron Regulatory Protein 1 - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mitochondria - chemistry</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins - chemistry</subject><subject>Mitochondrial Membrane Transport Proteins - genetics</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Membranes - chemistry</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>Mitochondrial Proteins - chemistry</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Nitric Oxide - chemistry</subject><subject>Organic chemistry</subject><subject>Oxidation-Reduction</subject><subject>Protein Folding</subject><subject>Protein Stability</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Transport</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Signal Transduction</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxS0EokvhzA35yiG7dmInzgVptd3-kbalgiBxsxx7NuuSxpXtLNrPwRfGq7QVIOHLWJ7fe_LMQ-g9JXNKKra4a_X8mlI250ywQrxAM0pEkRWcfn-JZoTkNKtzLk7QmxDuSDqspq_RSc4JzUtOZuhXswN8ZlULEQI-82OHG-U7iPjaRnezXjf4wu3BDwErfJNuPW682m6t_mGHDt-quPupDjg6_AXa0fYGqwGfQ_YVr_oxRPDYDqm5OkQXXG81Xmo32KgCLK68G5KqG3sVnT_gW-8i2AHTt-jVVvUB3j3WU_TtfN2sLrPN54ur1XKTaVZVMauhoKUwhlWibjVoZXhLiwJooRgRVd6WYHhOKE8LUDTN3uq6FK0wVZXXxPDiFH2afB_G9h6MhiF61csHb--VP0inrPy7M9id7NxeMlrnrKTJ4ONksPtHdrncyOMboaIqOKn3R3Yxsdq7EDxsnwWUyGOWMmUpj1nKKcuk-PDn9575p_ASUE8ApCXtLXgZtIVBg7EedJTG2f-a_waVwq7N</recordid><startdate>20141010</startdate><enddate>20141010</enddate><creator>Ferecatu, Ioana</creator><creator>Gonçalves, Sergio</creator><creator>Golinelli-Cohen, Marie-Pierre</creator><creator>Clémancey, Martin</creator><creator>Martelli, Alain</creator><creator>Riquier, Sylvie</creator><creator>Guittet, Eric</creator><creator>Latour, Jean-Marc</creator><creator>Puccio, Hélène</creator><creator>Drapier, Jean-Claude</creator><creator>Lescop, Ewen</creator><creator>Bouton, Cécile</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6738-8631</orcidid><orcidid>https://orcid.org/0000-0001-6088-3026</orcidid><orcidid>https://orcid.org/0000-0001-6842-9506</orcidid><orcidid>https://orcid.org/0000-0003-4711-2248</orcidid><orcidid>https://orcid.org/0000-0002-2623-9365</orcidid></search><sort><creationdate>20141010</creationdate><title>The Diabetes Drug Target MitoNEET Governs a Novel Trafficking Pathway to Rebuild an Fe-S Cluster into Cytosolic Aconitase/Iron Regulatory Protein 1</title><author>Ferecatu, Ioana ; Gonçalves, Sergio ; Golinelli-Cohen, Marie-Pierre ; Clémancey, Martin ; Martelli, Alain ; Riquier, Sylvie ; Guittet, Eric ; Latour, Jean-Marc ; Puccio, Hélène ; Drapier, Jean-Claude ; Lescop, Ewen ; Bouton, Cécile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-9e3168dd4789bcecad5b133e13a40872b6ed52015258a1000bc968b8d77290d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Cell Biology</topic><topic>Chemical Sciences</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression Regulation</topic><topic>HeLa Cells</topic><topic>Hep G2 Cells</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Iron - metabolism</topic><topic>Iron Regulatory Protein 1 - chemistry</topic><topic>Iron Regulatory Protein 1 - genetics</topic><topic>Iron Regulatory Protein 1 - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mitochondria - chemistry</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins - chemistry</topic><topic>Mitochondrial Membrane Transport Proteins - genetics</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Membranes - chemistry</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>Mitochondrial Proteins - chemistry</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Nitric Oxide - chemistry</topic><topic>Organic chemistry</topic><topic>Oxidation-Reduction</topic><topic>Protein Folding</topic><topic>Protein Stability</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Transport</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferecatu, Ioana</creatorcontrib><creatorcontrib>Gonçalves, Sergio</creatorcontrib><creatorcontrib>Golinelli-Cohen, Marie-Pierre</creatorcontrib><creatorcontrib>Clémancey, Martin</creatorcontrib><creatorcontrib>Martelli, Alain</creatorcontrib><creatorcontrib>Riquier, Sylvie</creatorcontrib><creatorcontrib>Guittet, Eric</creatorcontrib><creatorcontrib>Latour, Jean-Marc</creatorcontrib><creatorcontrib>Puccio, Hélène</creatorcontrib><creatorcontrib>Drapier, Jean-Claude</creatorcontrib><creatorcontrib>Lescop, Ewen</creatorcontrib><creatorcontrib>Bouton, Cécile</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferecatu, Ioana</au><au>Gonçalves, Sergio</au><au>Golinelli-Cohen, Marie-Pierre</au><au>Clémancey, Martin</au><au>Martelli, Alain</au><au>Riquier, Sylvie</au><au>Guittet, Eric</au><au>Latour, Jean-Marc</au><au>Puccio, Hélène</au><au>Drapier, Jean-Claude</au><au>Lescop, Ewen</au><au>Bouton, Cécile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Diabetes Drug Target MitoNEET Governs a Novel Trafficking Pathway to Rebuild an Fe-S Cluster into Cytosolic Aconitase/Iron Regulatory Protein 1</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-10-10</date><risdate>2014</risdate><volume>289</volume><issue>41</issue><spage>28070</spage><epage>28086</epage><pages>28070-28086</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25012650</pmid><doi>10.1074/jbc.M114.548438</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6738-8631</orcidid><orcidid>https://orcid.org/0000-0001-6088-3026</orcidid><orcidid>https://orcid.org/0000-0001-6842-9506</orcidid><orcidid>https://orcid.org/0000-0003-4711-2248</orcidid><orcidid>https://orcid.org/0000-0002-2623-9365</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2014-10, Vol.289 (41), p.28070-28086
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4192461
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Cell Biology
Chemical Sciences
Escherichia coli - genetics
Escherichia coli - metabolism
Gene Expression Regulation
HeLa Cells
Hep G2 Cells
Homeostasis
Humans
Hydrogen Peroxide - chemistry
Iron - metabolism
Iron Regulatory Protein 1 - chemistry
Iron Regulatory Protein 1 - genetics
Iron Regulatory Protein 1 - metabolism
Life Sciences
Mice
Mice, Transgenic
Mitochondria - chemistry
Mitochondria - metabolism
Mitochondrial Membrane Transport Proteins - chemistry
Mitochondrial Membrane Transport Proteins - genetics
Mitochondrial Membrane Transport Proteins - metabolism
Mitochondrial Membranes - chemistry
Mitochondrial Membranes - metabolism
Mitochondrial Proteins - chemistry
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Nitric Oxide - chemistry
Organic chemistry
Oxidation-Reduction
Protein Folding
Protein Stability
Protein Structure, Tertiary
Protein Transport
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Signal Transduction
title The Diabetes Drug Target MitoNEET Governs a Novel Trafficking Pathway to Rebuild an Fe-S Cluster into Cytosolic Aconitase/Iron Regulatory Protein 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Diabetes%20Drug%20Target%20MitoNEET%20Governs%20a%20Novel%20Trafficking%20Pathway%20to%20Rebuild%20an%20Fe-S%20Cluster%20into%20Cytosolic%20Aconitase/Iron%20Regulatory%20Protein%201&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ferecatu,%20Ioana&rft.date=2014-10-10&rft.volume=289&rft.issue=41&rft.spage=28070&rft.epage=28086&rft.pages=28070-28086&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.548438&rft_dat=%3Celsevier_pubme%3ES0021925820370666%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25012650&rft_els_id=S0021925820370666&rfr_iscdi=true