The Diabetes Drug Target MitoNEET Governs a Novel Trafficking Pathway to Rebuild an Fe-S Cluster into Cytosolic Aconitase/Iron Regulatory Protein 1
In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondri...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2014-10, Vol.289 (41), p.28070-28086 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28086 |
---|---|
container_issue | 41 |
container_start_page | 28070 |
container_title | The Journal of biological chemistry |
container_volume | 289 |
creator | Ferecatu, Ioana Gonçalves, Sergio Golinelli-Cohen, Marie-Pierre Clémancey, Martin Martelli, Alain Riquier, Sylvie Guittet, Eric Latour, Jean-Marc Puccio, Hélène Drapier, Jean-Claude Lescop, Ewen Bouton, Cécile |
description | In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis. |
doi_str_mv | 10.1074/jbc.M114.548438 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4192461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820370666</els_id><sourcerecordid>S0021925820370666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-9e3168dd4789bcecad5b133e13a40872b6ed52015258a1000bc968b8d77290d53</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS0EokvhzA35yiG7dmInzgVptd3-kbalgiBxsxx7NuuSxpXtLNrPwRfGq7QVIOHLWJ7fe_LMQ-g9JXNKKra4a_X8mlI250ywQrxAM0pEkRWcfn-JZoTkNKtzLk7QmxDuSDqspq_RSc4JzUtOZuhXswN8ZlULEQI-82OHG-U7iPjaRnezXjf4wu3BDwErfJNuPW682m6t_mGHDt-quPupDjg6_AXa0fYGqwGfQ_YVr_oxRPDYDqm5OkQXXG81Xmo32KgCLK68G5KqG3sVnT_gW-8i2AHTt-jVVvUB3j3WU_TtfN2sLrPN54ur1XKTaVZVMauhoKUwhlWibjVoZXhLiwJooRgRVd6WYHhOKE8LUDTN3uq6FK0wVZXXxPDiFH2afB_G9h6MhiF61csHb--VP0inrPy7M9id7NxeMlrnrKTJ4ONksPtHdrncyOMboaIqOKn3R3Yxsdq7EDxsnwWUyGOWMmUpj1nKKcuk-PDn9575p_ASUE8ApCXtLXgZtIVBg7EedJTG2f-a_waVwq7N</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Diabetes Drug Target MitoNEET Governs a Novel Trafficking Pathway to Rebuild an Fe-S Cluster into Cytosolic Aconitase/Iron Regulatory Protein 1</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ferecatu, Ioana ; Gonçalves, Sergio ; Golinelli-Cohen, Marie-Pierre ; Clémancey, Martin ; Martelli, Alain ; Riquier, Sylvie ; Guittet, Eric ; Latour, Jean-Marc ; Puccio, Hélène ; Drapier, Jean-Claude ; Lescop, Ewen ; Bouton, Cécile</creator><creatorcontrib>Ferecatu, Ioana ; Gonçalves, Sergio ; Golinelli-Cohen, Marie-Pierre ; Clémancey, Martin ; Martelli, Alain ; Riquier, Sylvie ; Guittet, Eric ; Latour, Jean-Marc ; Puccio, Hélène ; Drapier, Jean-Claude ; Lescop, Ewen ; Bouton, Cécile</creatorcontrib><description>In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.548438</identifier><identifier>PMID: 25012650</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Biology ; Chemical Sciences ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Expression Regulation ; HeLa Cells ; Hep G2 Cells ; Homeostasis ; Humans ; Hydrogen Peroxide - chemistry ; Iron - metabolism ; Iron Regulatory Protein 1 - chemistry ; Iron Regulatory Protein 1 - genetics ; Iron Regulatory Protein 1 - metabolism ; Life Sciences ; Mice ; Mice, Transgenic ; Mitochondria - chemistry ; Mitochondria - metabolism ; Mitochondrial Membrane Transport Proteins - chemistry ; Mitochondrial Membrane Transport Proteins - genetics ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Membranes - chemistry ; Mitochondrial Membranes - metabolism ; Mitochondrial Proteins - chemistry ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Nitric Oxide - chemistry ; Organic chemistry ; Oxidation-Reduction ; Protein Folding ; Protein Stability ; Protein Structure, Tertiary ; Protein Transport ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Signal Transduction</subject><ispartof>The Journal of biological chemistry, 2014-10, Vol.289 (41), p.28070-28086</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-9e3168dd4789bcecad5b133e13a40872b6ed52015258a1000bc968b8d77290d53</citedby><cites>FETCH-LOGICAL-c477t-9e3168dd4789bcecad5b133e13a40872b6ed52015258a1000bc968b8d77290d53</cites><orcidid>0000-0002-6738-8631 ; 0000-0001-6088-3026 ; 0000-0001-6842-9506 ; 0000-0003-4711-2248 ; 0000-0002-2623-9365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192461/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192461/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25012650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01873509$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferecatu, Ioana</creatorcontrib><creatorcontrib>Gonçalves, Sergio</creatorcontrib><creatorcontrib>Golinelli-Cohen, Marie-Pierre</creatorcontrib><creatorcontrib>Clémancey, Martin</creatorcontrib><creatorcontrib>Martelli, Alain</creatorcontrib><creatorcontrib>Riquier, Sylvie</creatorcontrib><creatorcontrib>Guittet, Eric</creatorcontrib><creatorcontrib>Latour, Jean-Marc</creatorcontrib><creatorcontrib>Puccio, Hélène</creatorcontrib><creatorcontrib>Drapier, Jean-Claude</creatorcontrib><creatorcontrib>Lescop, Ewen</creatorcontrib><creatorcontrib>Bouton, Cécile</creatorcontrib><title>The Diabetes Drug Target MitoNEET Governs a Novel Trafficking Pathway to Rebuild an Fe-S Cluster into Cytosolic Aconitase/Iron Regulatory Protein 1</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis.</description><subject>Animals</subject><subject>Cell Biology</subject><subject>Chemical Sciences</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression Regulation</subject><subject>HeLa Cells</subject><subject>Hep G2 Cells</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Iron - metabolism</subject><subject>Iron Regulatory Protein 1 - chemistry</subject><subject>Iron Regulatory Protein 1 - genetics</subject><subject>Iron Regulatory Protein 1 - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mitochondria - chemistry</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins - chemistry</subject><subject>Mitochondrial Membrane Transport Proteins - genetics</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Membranes - chemistry</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>Mitochondrial Proteins - chemistry</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Nitric Oxide - chemistry</subject><subject>Organic chemistry</subject><subject>Oxidation-Reduction</subject><subject>Protein Folding</subject><subject>Protein Stability</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Transport</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Signal Transduction</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxS0EokvhzA35yiG7dmInzgVptd3-kbalgiBxsxx7NuuSxpXtLNrPwRfGq7QVIOHLWJ7fe_LMQ-g9JXNKKra4a_X8mlI250ywQrxAM0pEkRWcfn-JZoTkNKtzLk7QmxDuSDqspq_RSc4JzUtOZuhXswN8ZlULEQI-82OHG-U7iPjaRnezXjf4wu3BDwErfJNuPW682m6t_mGHDt-quPupDjg6_AXa0fYGqwGfQ_YVr_oxRPDYDqm5OkQXXG81Xmo32KgCLK68G5KqG3sVnT_gW-8i2AHTt-jVVvUB3j3WU_TtfN2sLrPN54ur1XKTaVZVMauhoKUwhlWibjVoZXhLiwJooRgRVd6WYHhOKE8LUDTN3uq6FK0wVZXXxPDiFH2afB_G9h6MhiF61csHb--VP0inrPy7M9id7NxeMlrnrKTJ4ONksPtHdrncyOMboaIqOKn3R3Yxsdq7EDxsnwWUyGOWMmUpj1nKKcuk-PDn9575p_ASUE8ApCXtLXgZtIVBg7EedJTG2f-a_waVwq7N</recordid><startdate>20141010</startdate><enddate>20141010</enddate><creator>Ferecatu, Ioana</creator><creator>Gonçalves, Sergio</creator><creator>Golinelli-Cohen, Marie-Pierre</creator><creator>Clémancey, Martin</creator><creator>Martelli, Alain</creator><creator>Riquier, Sylvie</creator><creator>Guittet, Eric</creator><creator>Latour, Jean-Marc</creator><creator>Puccio, Hélène</creator><creator>Drapier, Jean-Claude</creator><creator>Lescop, Ewen</creator><creator>Bouton, Cécile</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6738-8631</orcidid><orcidid>https://orcid.org/0000-0001-6088-3026</orcidid><orcidid>https://orcid.org/0000-0001-6842-9506</orcidid><orcidid>https://orcid.org/0000-0003-4711-2248</orcidid><orcidid>https://orcid.org/0000-0002-2623-9365</orcidid></search><sort><creationdate>20141010</creationdate><title>The Diabetes Drug Target MitoNEET Governs a Novel Trafficking Pathway to Rebuild an Fe-S Cluster into Cytosolic Aconitase/Iron Regulatory Protein 1</title><author>Ferecatu, Ioana ; Gonçalves, Sergio ; Golinelli-Cohen, Marie-Pierre ; Clémancey, Martin ; Martelli, Alain ; Riquier, Sylvie ; Guittet, Eric ; Latour, Jean-Marc ; Puccio, Hélène ; Drapier, Jean-Claude ; Lescop, Ewen ; Bouton, Cécile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-9e3168dd4789bcecad5b133e13a40872b6ed52015258a1000bc968b8d77290d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Cell Biology</topic><topic>Chemical Sciences</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression Regulation</topic><topic>HeLa Cells</topic><topic>Hep G2 Cells</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Iron - metabolism</topic><topic>Iron Regulatory Protein 1 - chemistry</topic><topic>Iron Regulatory Protein 1 - genetics</topic><topic>Iron Regulatory Protein 1 - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mitochondria - chemistry</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins - chemistry</topic><topic>Mitochondrial Membrane Transport Proteins - genetics</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Membranes - chemistry</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>Mitochondrial Proteins - chemistry</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Nitric Oxide - chemistry</topic><topic>Organic chemistry</topic><topic>Oxidation-Reduction</topic><topic>Protein Folding</topic><topic>Protein Stability</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Transport</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferecatu, Ioana</creatorcontrib><creatorcontrib>Gonçalves, Sergio</creatorcontrib><creatorcontrib>Golinelli-Cohen, Marie-Pierre</creatorcontrib><creatorcontrib>Clémancey, Martin</creatorcontrib><creatorcontrib>Martelli, Alain</creatorcontrib><creatorcontrib>Riquier, Sylvie</creatorcontrib><creatorcontrib>Guittet, Eric</creatorcontrib><creatorcontrib>Latour, Jean-Marc</creatorcontrib><creatorcontrib>Puccio, Hélène</creatorcontrib><creatorcontrib>Drapier, Jean-Claude</creatorcontrib><creatorcontrib>Lescop, Ewen</creatorcontrib><creatorcontrib>Bouton, Cécile</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferecatu, Ioana</au><au>Gonçalves, Sergio</au><au>Golinelli-Cohen, Marie-Pierre</au><au>Clémancey, Martin</au><au>Martelli, Alain</au><au>Riquier, Sylvie</au><au>Guittet, Eric</au><au>Latour, Jean-Marc</au><au>Puccio, Hélène</au><au>Drapier, Jean-Claude</au><au>Lescop, Ewen</au><au>Bouton, Cécile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Diabetes Drug Target MitoNEET Governs a Novel Trafficking Pathway to Rebuild an Fe-S Cluster into Cytosolic Aconitase/Iron Regulatory Protein 1</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-10-10</date><risdate>2014</risdate><volume>289</volume><issue>41</issue><spage>28070</spage><epage>28086</epage><pages>28070-28086</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25012650</pmid><doi>10.1074/jbc.M114.548438</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6738-8631</orcidid><orcidid>https://orcid.org/0000-0001-6088-3026</orcidid><orcidid>https://orcid.org/0000-0001-6842-9506</orcidid><orcidid>https://orcid.org/0000-0003-4711-2248</orcidid><orcidid>https://orcid.org/0000-0002-2623-9365</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2014-10, Vol.289 (41), p.28070-28086 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4192461 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Cell Biology Chemical Sciences Escherichia coli - genetics Escherichia coli - metabolism Gene Expression Regulation HeLa Cells Hep G2 Cells Homeostasis Humans Hydrogen Peroxide - chemistry Iron - metabolism Iron Regulatory Protein 1 - chemistry Iron Regulatory Protein 1 - genetics Iron Regulatory Protein 1 - metabolism Life Sciences Mice Mice, Transgenic Mitochondria - chemistry Mitochondria - metabolism Mitochondrial Membrane Transport Proteins - chemistry Mitochondrial Membrane Transport Proteins - genetics Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial Membranes - chemistry Mitochondrial Membranes - metabolism Mitochondrial Proteins - chemistry Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Nitric Oxide - chemistry Organic chemistry Oxidation-Reduction Protein Folding Protein Stability Protein Structure, Tertiary Protein Transport Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Signal Transduction |
title | The Diabetes Drug Target MitoNEET Governs a Novel Trafficking Pathway to Rebuild an Fe-S Cluster into Cytosolic Aconitase/Iron Regulatory Protein 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Diabetes%20Drug%20Target%20MitoNEET%20Governs%20a%20Novel%20Trafficking%20Pathway%20to%20Rebuild%20an%20Fe-S%20Cluster%20into%20Cytosolic%20Aconitase/Iron%20Regulatory%20Protein%201&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ferecatu,%20Ioana&rft.date=2014-10-10&rft.volume=289&rft.issue=41&rft.spage=28070&rft.epage=28086&rft.pages=28070-28086&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.548438&rft_dat=%3Celsevier_pubme%3ES0021925820370666%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25012650&rft_els_id=S0021925820370666&rfr_iscdi=true |