Oxidative stress modulates vascular smooth muscle cell phenotype via CTGF in thoracic aortic aneurysm

Dissection and rupture of the ascending aorta are life-threatening conditions resulting in 80% mortality. Ascending aortic replacement in patients presenting with thoracic aortic aneurysm (TAA) is determined by metric measurement. However, a significant number of dissections occur outside of the par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular research 2013-11, Vol.100 (2), p.316-324
Hauptverfasser: Branchetti, Emanuela, Poggio, Paolo, Sainger, Rachana, Shang, Eric, Grau, Juan B, Jackson, Benjamin M, Lai, Eric K, Parmacek, Michael S, Gorman, Robert C, Gorman, Joseph H, Bavaria, Joseph E, Ferrari, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 324
container_issue 2
container_start_page 316
container_title Cardiovascular research
container_volume 100
creator Branchetti, Emanuela
Poggio, Paolo
Sainger, Rachana
Shang, Eric
Grau, Juan B
Jackson, Benjamin M
Lai, Eric K
Parmacek, Michael S
Gorman, Robert C
Gorman, Joseph H
Bavaria, Joseph E
Ferrari, Giovanni
description Dissection and rupture of the ascending aorta are life-threatening conditions resulting in 80% mortality. Ascending aortic replacement in patients presenting with thoracic aortic aneurysm (TAA) is determined by metric measurement. However, a significant number of dissections occur outside of the parameters suggested by the current guidelines. We investigate the correlation among altered haemodynamic condition, oxidative stress, and vascular smooth muscle cell (VSMC) phenotype in controlling tissue homoeostasis. We demonstrate using finite element analysis (FEA) based on computed tomography geometries that TAA patients have higher wall stress in the ascending aorta than non-dilated patients. We also show that altered haemodynamic conditions are associated with increased levels of reactive oxygen species (ROS), direct regulators of the VSMC phenotype in the microregional area of the ascending aorta. Using in vitro and ex vivo studies on human tissues, we show that ROS accumulation correlates with media layer degeneration and increased connective tissue growth factor (CTGF) expression, which modulate the synthetic VSMC phenotype. Results were validated by a murine model of TAA (C57BL/6J) based on Angiotensin II infusion showing that medial thickening and luminal expansion of the proximal aorta is associated with the VSMC synthetic phenotype as seen in human specimens. Increased peak wall stress correlates with change in VSMC towards a synthetic phenotype mediated by ROS accumulation via CTGF. Understanding the molecular mechanisms that regulate VSMC towards a synthetic phenotype could unveil new regulatory pathways of aortic homoeostasis and impact the risk-stratification tool for patients at risk of aortic dissection and rupture.
doi_str_mv 10.1093/cvr/cvt205
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4192047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1443426006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-52868f39a308d3192d4bf1c39175551297db66bafb3147155826c222f241ec53</originalsourceid><addsrcrecordid>eNpVUU1LAzEQDaLYWr34AyRHEVbzuR8XQYqtQqGX3kM2m7WR3U1Nsov992ZpLXoYZoZ5vDePB8AtRo8YFfRJDS5WIIifgSnOOE8oYfwcTBFCeZLSlE7AlfefceU8Y5dgQmiR8wLRKdDrb1PJYAYNfXDae9jaqm9k0B4O0qs4Ouhba8MWtr1XjYZKNw3cbXVnw36n4WAknG-WC2g6GLbWSWUUlNaFsXW6d3vfXoOLWjZe3xz7DGwWr5v5W7JaL9_nL6tE0SwPCSd5mte0kBTlFcUFqVhZY0WL0RTHpMiqMk1LWZcUswxznpNUEUJqwrBWnM7A84F215etrpTugpON2DnTSrcXVhrx_9KZrfiwg2BRC7EsEtwfCZz96rUPojV-9BuN2N4LzBhlJEUojdCHA1Q5673T9UkGIzHGImIs4hBLBN_9fewE_c2B_gARwot5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443426006</pqid></control><display><type>article</type><title>Oxidative stress modulates vascular smooth muscle cell phenotype via CTGF in thoracic aortic aneurysm</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Branchetti, Emanuela ; Poggio, Paolo ; Sainger, Rachana ; Shang, Eric ; Grau, Juan B ; Jackson, Benjamin M ; Lai, Eric K ; Parmacek, Michael S ; Gorman, Robert C ; Gorman, Joseph H ; Bavaria, Joseph E ; Ferrari, Giovanni</creator><creatorcontrib>Branchetti, Emanuela ; Poggio, Paolo ; Sainger, Rachana ; Shang, Eric ; Grau, Juan B ; Jackson, Benjamin M ; Lai, Eric K ; Parmacek, Michael S ; Gorman, Robert C ; Gorman, Joseph H ; Bavaria, Joseph E ; Ferrari, Giovanni</creatorcontrib><description>Dissection and rupture of the ascending aorta are life-threatening conditions resulting in 80% mortality. Ascending aortic replacement in patients presenting with thoracic aortic aneurysm (TAA) is determined by metric measurement. However, a significant number of dissections occur outside of the parameters suggested by the current guidelines. We investigate the correlation among altered haemodynamic condition, oxidative stress, and vascular smooth muscle cell (VSMC) phenotype in controlling tissue homoeostasis. We demonstrate using finite element analysis (FEA) based on computed tomography geometries that TAA patients have higher wall stress in the ascending aorta than non-dilated patients. We also show that altered haemodynamic conditions are associated with increased levels of reactive oxygen species (ROS), direct regulators of the VSMC phenotype in the microregional area of the ascending aorta. Using in vitro and ex vivo studies on human tissues, we show that ROS accumulation correlates with media layer degeneration and increased connective tissue growth factor (CTGF) expression, which modulate the synthetic VSMC phenotype. Results were validated by a murine model of TAA (C57BL/6J) based on Angiotensin II infusion showing that medial thickening and luminal expansion of the proximal aorta is associated with the VSMC synthetic phenotype as seen in human specimens. Increased peak wall stress correlates with change in VSMC towards a synthetic phenotype mediated by ROS accumulation via CTGF. Understanding the molecular mechanisms that regulate VSMC towards a synthetic phenotype could unveil new regulatory pathways of aortic homoeostasis and impact the risk-stratification tool for patients at risk of aortic dissection and rupture.</description><identifier>ISSN: 0008-6363</identifier><identifier>EISSN: 1755-3245</identifier><identifier>DOI: 10.1093/cvr/cvt205</identifier><identifier>PMID: 23985903</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Angiotensin II - pharmacology ; Animals ; Aortic Aneurysm, Thoracic - metabolism ; Connective Tissue Growth Factor - physiology ; ets-Domain Protein Elk-1 - analysis ; Finite Element Analysis ; Humans ; Mice ; Mice, Inbred C57BL ; Muscle, Smooth, Vascular - cytology ; Myocytes, Smooth Muscle - metabolism ; Original ; Oxidative Stress ; Phenotype ; Reactive Oxygen Species - metabolism ; Serum Response Factor - analysis ; Vimentin - metabolism</subject><ispartof>Cardiovascular research, 2013-11, Vol.100 (2), p.316-324</ispartof><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2013. For permissions please email: journals.permissions@oup.com. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-52868f39a308d3192d4bf1c39175551297db66bafb3147155826c222f241ec53</citedby><cites>FETCH-LOGICAL-c378t-52868f39a308d3192d4bf1c39175551297db66bafb3147155826c222f241ec53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23985903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Branchetti, Emanuela</creatorcontrib><creatorcontrib>Poggio, Paolo</creatorcontrib><creatorcontrib>Sainger, Rachana</creatorcontrib><creatorcontrib>Shang, Eric</creatorcontrib><creatorcontrib>Grau, Juan B</creatorcontrib><creatorcontrib>Jackson, Benjamin M</creatorcontrib><creatorcontrib>Lai, Eric K</creatorcontrib><creatorcontrib>Parmacek, Michael S</creatorcontrib><creatorcontrib>Gorman, Robert C</creatorcontrib><creatorcontrib>Gorman, Joseph H</creatorcontrib><creatorcontrib>Bavaria, Joseph E</creatorcontrib><creatorcontrib>Ferrari, Giovanni</creatorcontrib><title>Oxidative stress modulates vascular smooth muscle cell phenotype via CTGF in thoracic aortic aneurysm</title><title>Cardiovascular research</title><addtitle>Cardiovasc Res</addtitle><description>Dissection and rupture of the ascending aorta are life-threatening conditions resulting in 80% mortality. Ascending aortic replacement in patients presenting with thoracic aortic aneurysm (TAA) is determined by metric measurement. However, a significant number of dissections occur outside of the parameters suggested by the current guidelines. We investigate the correlation among altered haemodynamic condition, oxidative stress, and vascular smooth muscle cell (VSMC) phenotype in controlling tissue homoeostasis. We demonstrate using finite element analysis (FEA) based on computed tomography geometries that TAA patients have higher wall stress in the ascending aorta than non-dilated patients. We also show that altered haemodynamic conditions are associated with increased levels of reactive oxygen species (ROS), direct regulators of the VSMC phenotype in the microregional area of the ascending aorta. Using in vitro and ex vivo studies on human tissues, we show that ROS accumulation correlates with media layer degeneration and increased connective tissue growth factor (CTGF) expression, which modulate the synthetic VSMC phenotype. Results were validated by a murine model of TAA (C57BL/6J) based on Angiotensin II infusion showing that medial thickening and luminal expansion of the proximal aorta is associated with the VSMC synthetic phenotype as seen in human specimens. Increased peak wall stress correlates with change in VSMC towards a synthetic phenotype mediated by ROS accumulation via CTGF. Understanding the molecular mechanisms that regulate VSMC towards a synthetic phenotype could unveil new regulatory pathways of aortic homoeostasis and impact the risk-stratification tool for patients at risk of aortic dissection and rupture.</description><subject>Angiotensin II - pharmacology</subject><subject>Animals</subject><subject>Aortic Aneurysm, Thoracic - metabolism</subject><subject>Connective Tissue Growth Factor - physiology</subject><subject>ets-Domain Protein Elk-1 - analysis</subject><subject>Finite Element Analysis</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Original</subject><subject>Oxidative Stress</subject><subject>Phenotype</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Serum Response Factor - analysis</subject><subject>Vimentin - metabolism</subject><issn>0008-6363</issn><issn>1755-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1LAzEQDaLYWr34AyRHEVbzuR8XQYqtQqGX3kM2m7WR3U1Nsov992ZpLXoYZoZ5vDePB8AtRo8YFfRJDS5WIIifgSnOOE8oYfwcTBFCeZLSlE7AlfefceU8Y5dgQmiR8wLRKdDrb1PJYAYNfXDae9jaqm9k0B4O0qs4Ouhba8MWtr1XjYZKNw3cbXVnw36n4WAknG-WC2g6GLbWSWUUlNaFsXW6d3vfXoOLWjZe3xz7DGwWr5v5W7JaL9_nL6tE0SwPCSd5mte0kBTlFcUFqVhZY0WL0RTHpMiqMk1LWZcUswxznpNUEUJqwrBWnM7A84F215etrpTugpON2DnTSrcXVhrx_9KZrfiwg2BRC7EsEtwfCZz96rUPojV-9BuN2N4LzBhlJEUojdCHA1Q5673T9UkGIzHGImIs4hBLBN_9fewE_c2B_gARwot5</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Branchetti, Emanuela</creator><creator>Poggio, Paolo</creator><creator>Sainger, Rachana</creator><creator>Shang, Eric</creator><creator>Grau, Juan B</creator><creator>Jackson, Benjamin M</creator><creator>Lai, Eric K</creator><creator>Parmacek, Michael S</creator><creator>Gorman, Robert C</creator><creator>Gorman, Joseph H</creator><creator>Bavaria, Joseph E</creator><creator>Ferrari, Giovanni</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131101</creationdate><title>Oxidative stress modulates vascular smooth muscle cell phenotype via CTGF in thoracic aortic aneurysm</title><author>Branchetti, Emanuela ; Poggio, Paolo ; Sainger, Rachana ; Shang, Eric ; Grau, Juan B ; Jackson, Benjamin M ; Lai, Eric K ; Parmacek, Michael S ; Gorman, Robert C ; Gorman, Joseph H ; Bavaria, Joseph E ; Ferrari, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-52868f39a308d3192d4bf1c39175551297db66bafb3147155826c222f241ec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Angiotensin II - pharmacology</topic><topic>Animals</topic><topic>Aortic Aneurysm, Thoracic - metabolism</topic><topic>Connective Tissue Growth Factor - physiology</topic><topic>ets-Domain Protein Elk-1 - analysis</topic><topic>Finite Element Analysis</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Original</topic><topic>Oxidative Stress</topic><topic>Phenotype</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Serum Response Factor - analysis</topic><topic>Vimentin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Branchetti, Emanuela</creatorcontrib><creatorcontrib>Poggio, Paolo</creatorcontrib><creatorcontrib>Sainger, Rachana</creatorcontrib><creatorcontrib>Shang, Eric</creatorcontrib><creatorcontrib>Grau, Juan B</creatorcontrib><creatorcontrib>Jackson, Benjamin M</creatorcontrib><creatorcontrib>Lai, Eric K</creatorcontrib><creatorcontrib>Parmacek, Michael S</creatorcontrib><creatorcontrib>Gorman, Robert C</creatorcontrib><creatorcontrib>Gorman, Joseph H</creatorcontrib><creatorcontrib>Bavaria, Joseph E</creatorcontrib><creatorcontrib>Ferrari, Giovanni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cardiovascular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Branchetti, Emanuela</au><au>Poggio, Paolo</au><au>Sainger, Rachana</au><au>Shang, Eric</au><au>Grau, Juan B</au><au>Jackson, Benjamin M</au><au>Lai, Eric K</au><au>Parmacek, Michael S</au><au>Gorman, Robert C</au><au>Gorman, Joseph H</au><au>Bavaria, Joseph E</au><au>Ferrari, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative stress modulates vascular smooth muscle cell phenotype via CTGF in thoracic aortic aneurysm</atitle><jtitle>Cardiovascular research</jtitle><addtitle>Cardiovasc Res</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>100</volume><issue>2</issue><spage>316</spage><epage>324</epage><pages>316-324</pages><issn>0008-6363</issn><eissn>1755-3245</eissn><abstract>Dissection and rupture of the ascending aorta are life-threatening conditions resulting in 80% mortality. Ascending aortic replacement in patients presenting with thoracic aortic aneurysm (TAA) is determined by metric measurement. However, a significant number of dissections occur outside of the parameters suggested by the current guidelines. We investigate the correlation among altered haemodynamic condition, oxidative stress, and vascular smooth muscle cell (VSMC) phenotype in controlling tissue homoeostasis. We demonstrate using finite element analysis (FEA) based on computed tomography geometries that TAA patients have higher wall stress in the ascending aorta than non-dilated patients. We also show that altered haemodynamic conditions are associated with increased levels of reactive oxygen species (ROS), direct regulators of the VSMC phenotype in the microregional area of the ascending aorta. Using in vitro and ex vivo studies on human tissues, we show that ROS accumulation correlates with media layer degeneration and increased connective tissue growth factor (CTGF) expression, which modulate the synthetic VSMC phenotype. Results were validated by a murine model of TAA (C57BL/6J) based on Angiotensin II infusion showing that medial thickening and luminal expansion of the proximal aorta is associated with the VSMC synthetic phenotype as seen in human specimens. Increased peak wall stress correlates with change in VSMC towards a synthetic phenotype mediated by ROS accumulation via CTGF. Understanding the molecular mechanisms that regulate VSMC towards a synthetic phenotype could unveil new regulatory pathways of aortic homoeostasis and impact the risk-stratification tool for patients at risk of aortic dissection and rupture.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>23985903</pmid><doi>10.1093/cvr/cvt205</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6363
ispartof Cardiovascular research, 2013-11, Vol.100 (2), p.316-324
issn 0008-6363
1755-3245
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4192047
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Angiotensin II - pharmacology
Animals
Aortic Aneurysm, Thoracic - metabolism
Connective Tissue Growth Factor - physiology
ets-Domain Protein Elk-1 - analysis
Finite Element Analysis
Humans
Mice
Mice, Inbred C57BL
Muscle, Smooth, Vascular - cytology
Myocytes, Smooth Muscle - metabolism
Original
Oxidative Stress
Phenotype
Reactive Oxygen Species - metabolism
Serum Response Factor - analysis
Vimentin - metabolism
title Oxidative stress modulates vascular smooth muscle cell phenotype via CTGF in thoracic aortic aneurysm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20stress%20modulates%20vascular%20smooth%20muscle%20cell%20phenotype%20via%20CTGF%20in%20thoracic%20aortic%20aneurysm&rft.jtitle=Cardiovascular%20research&rft.au=Branchetti,%20Emanuela&rft.date=2013-11-01&rft.volume=100&rft.issue=2&rft.spage=316&rft.epage=324&rft.pages=316-324&rft.issn=0008-6363&rft.eissn=1755-3245&rft_id=info:doi/10.1093/cvr/cvt205&rft_dat=%3Cproquest_pubme%3E1443426006%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443426006&rft_id=info:pmid/23985903&rfr_iscdi=true