Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation

Cardiac hypertrophy, an adaptive process that responds to increased wall stress, is characterized by the enlargement of cardiomyocytes and structural remodeling. It is stimulated by various growth signals, of which the mTORC1 pathway is a well-recognized source. Here, we show that loss of Flcn, a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2014-11, Vol.23 (21), p.5706-5719
Hauptverfasser: Hasumi, Yukiko, Baba, Masaya, Hasumi, Hisashi, Huang, Ying, Lang, Martin, Reindorf, Rachel, Oh, Hyoung-bin, Sciarretta, Sebastiano, Nagashima, Kunio, Haines, Diana C, Schneider, Michael D, Adelstein, Robert S, Schmidt, Laura S, Sadoshima, Junichi, Marston Linehan, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5719
container_issue 21
container_start_page 5706
container_title Human molecular genetics
container_volume 23
creator Hasumi, Yukiko
Baba, Masaya
Hasumi, Hisashi
Huang, Ying
Lang, Martin
Reindorf, Rachel
Oh, Hyoung-bin
Sciarretta, Sebastiano
Nagashima, Kunio
Haines, Diana C
Schneider, Michael D
Adelstein, Robert S
Schmidt, Laura S
Sadoshima, Junichi
Marston Linehan, W
description Cardiac hypertrophy, an adaptive process that responds to increased wall stress, is characterized by the enlargement of cardiomyocytes and structural remodeling. It is stimulated by various growth signals, of which the mTORC1 pathway is a well-recognized source. Here, we show that loss of Flcn, a novel AMPK-mTOR interacting molecule, causes severe cardiac hypertrophy with deregulated energy homeostasis leading to dilated cardiomyopathy in mice. We found that mTORC1 activity was upregulated in Flcn-deficient hearts, and that rapamycin treatment significantly reduced heart mass and ameliorated cardiac dysfunction. Phospho-AMP-activated protein kinase (AMPK)-alpha (T172) was reduced in Flcn-deficient hearts and nonresponsive to various stimulations including metformin and AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide). ATP levels were elevated and mitochondrial function was increased in Flcn-deficient hearts, suggesting that excess energy resulting from up-regulated mitochondrial metabolism under Flcn deficiency might attenuate AMPK activation. Expression of Ppargc1a, a central molecule for mitochondrial metabolism, was increased in Flcn-deficient hearts and indeed, inactivation of Ppargc1a in Flcn-deficient hearts significantly reduced heart mass and prolonged survival. Ppargc1a inactivation restored phospho-AMPK-alpha levels and suppressed mTORC1 activity in Flcn-deficient hearts, suggesting that up-regulated Ppargc1a confers increased mitochondrial metabolism and excess energy, leading to inactivation of AMPK and activation of mTORC1. Rapamycin treatment did not affect the heart size of Flcn/Ppargc1a doubly inactivated hearts, further supporting the idea that Ppargc1a is the critical element leading to deregulation of the AMPK-mTOR-axis and resulting in cardiac hypertrophy under Flcn deficiency. These data support an important role for Flcn in cardiac homeostasis in the murine model.
doi_str_mv 10.1093/hmg/ddu286
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4189904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1610764160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-bacae45c02786682d9dff74720fe4ca1a7031270b753c7aa29309ebb77316be83</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoWj8u_gDJUYXVySYmm4sgxapQEKReDdlsthvJbmqyW-i_t9oqeprDPO87Aw9CpwSuCEh63bTz66oa8oLvoBFhHLIcCrqLRiA5y7gEfoAOU3oHIJxRsY8Ociah4AJG6G0SvHdm8K7D5xNvugvsOm16t9S9Cx32VlcJ9wG3Q3SdxUbHymmDm9XCxj6GRbPCfRPDMG9wO3t-GRNc2Wjng__OH6O9WvtkT7bzCL1O7mfjx2z6_PA0vptmhjHWZ6U22rIbA7koOC_ySlZ1LZjIobbMaKIFUJILKMUNNULrXFKQtiyFoISXtqBH6HbTuxjK1lbGdn3UXi2ia3VcqaCd-r_pXKPmYakYKaQEti443xbE8DHY1KvWJWO9150NQ1KEExCcEQ5r9HKDmhhSirb-PUNAfQlRayFqI2QNn_197Bf9MUA_AU8QiaI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1610764160</pqid></control><display><type>article</type><title>Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Hasumi, Yukiko ; Baba, Masaya ; Hasumi, Hisashi ; Huang, Ying ; Lang, Martin ; Reindorf, Rachel ; Oh, Hyoung-bin ; Sciarretta, Sebastiano ; Nagashima, Kunio ; Haines, Diana C ; Schneider, Michael D ; Adelstein, Robert S ; Schmidt, Laura S ; Sadoshima, Junichi ; Marston Linehan, W</creator><creatorcontrib>Hasumi, Yukiko ; Baba, Masaya ; Hasumi, Hisashi ; Huang, Ying ; Lang, Martin ; Reindorf, Rachel ; Oh, Hyoung-bin ; Sciarretta, Sebastiano ; Nagashima, Kunio ; Haines, Diana C ; Schneider, Michael D ; Adelstein, Robert S ; Schmidt, Laura S ; Sadoshima, Junichi ; Marston Linehan, W</creatorcontrib><description>Cardiac hypertrophy, an adaptive process that responds to increased wall stress, is characterized by the enlargement of cardiomyocytes and structural remodeling. It is stimulated by various growth signals, of which the mTORC1 pathway is a well-recognized source. Here, we show that loss of Flcn, a novel AMPK-mTOR interacting molecule, causes severe cardiac hypertrophy with deregulated energy homeostasis leading to dilated cardiomyopathy in mice. We found that mTORC1 activity was upregulated in Flcn-deficient hearts, and that rapamycin treatment significantly reduced heart mass and ameliorated cardiac dysfunction. Phospho-AMP-activated protein kinase (AMPK)-alpha (T172) was reduced in Flcn-deficient hearts and nonresponsive to various stimulations including metformin and AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide). ATP levels were elevated and mitochondrial function was increased in Flcn-deficient hearts, suggesting that excess energy resulting from up-regulated mitochondrial metabolism under Flcn deficiency might attenuate AMPK activation. Expression of Ppargc1a, a central molecule for mitochondrial metabolism, was increased in Flcn-deficient hearts and indeed, inactivation of Ppargc1a in Flcn-deficient hearts significantly reduced heart mass and prolonged survival. Ppargc1a inactivation restored phospho-AMPK-alpha levels and suppressed mTORC1 activity in Flcn-deficient hearts, suggesting that up-regulated Ppargc1a confers increased mitochondrial metabolism and excess energy, leading to inactivation of AMPK and activation of mTORC1. Rapamycin treatment did not affect the heart size of Flcn/Ppargc1a doubly inactivated hearts, further supporting the idea that Ppargc1a is the critical element leading to deregulation of the AMPK-mTOR-axis and resulting in cardiac hypertrophy under Flcn deficiency. These data support an important role for Flcn in cardiac homeostasis in the murine model.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddu286</identifier><identifier>PMID: 24908670</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenosine Triphosphate - biosynthesis ; AMP-Activated Protein Kinases - metabolism ; Animals ; Cardiomegaly - complications ; Cardiomegaly - drug therapy ; Cardiomegaly - genetics ; Cardiomegaly - metabolism ; Cardiomegaly - pathology ; Cell Line ; Disease Models, Animal ; Enzyme Activation ; Estrone - genetics ; Gene Silencing ; Heart Failure - etiology ; Heart Failure - pathology ; Mechanistic Target of Rapamycin Complex 1 ; Mice ; Mice, Transgenic ; Mitochondrial Turnover ; Multiprotein Complexes - metabolism ; Organ Size - drug effects ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Phosphorylation ; Signal Transduction ; Sirolimus - pharmacology ; TOR Serine-Threonine Kinases - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Ventricular Function - drug effects</subject><ispartof>Human molecular genetics, 2014-11, Vol.23 (21), p.5706-5719</ispartof><rights>Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.</rights><rights>Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-bacae45c02786682d9dff74720fe4ca1a7031270b753c7aa29309ebb77316be83</citedby><cites>FETCH-LOGICAL-c444t-bacae45c02786682d9dff74720fe4ca1a7031270b753c7aa29309ebb77316be83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24908670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasumi, Yukiko</creatorcontrib><creatorcontrib>Baba, Masaya</creatorcontrib><creatorcontrib>Hasumi, Hisashi</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Lang, Martin</creatorcontrib><creatorcontrib>Reindorf, Rachel</creatorcontrib><creatorcontrib>Oh, Hyoung-bin</creatorcontrib><creatorcontrib>Sciarretta, Sebastiano</creatorcontrib><creatorcontrib>Nagashima, Kunio</creatorcontrib><creatorcontrib>Haines, Diana C</creatorcontrib><creatorcontrib>Schneider, Michael D</creatorcontrib><creatorcontrib>Adelstein, Robert S</creatorcontrib><creatorcontrib>Schmidt, Laura S</creatorcontrib><creatorcontrib>Sadoshima, Junichi</creatorcontrib><creatorcontrib>Marston Linehan, W</creatorcontrib><title>Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Cardiac hypertrophy, an adaptive process that responds to increased wall stress, is characterized by the enlargement of cardiomyocytes and structural remodeling. It is stimulated by various growth signals, of which the mTORC1 pathway is a well-recognized source. Here, we show that loss of Flcn, a novel AMPK-mTOR interacting molecule, causes severe cardiac hypertrophy with deregulated energy homeostasis leading to dilated cardiomyopathy in mice. We found that mTORC1 activity was upregulated in Flcn-deficient hearts, and that rapamycin treatment significantly reduced heart mass and ameliorated cardiac dysfunction. Phospho-AMP-activated protein kinase (AMPK)-alpha (T172) was reduced in Flcn-deficient hearts and nonresponsive to various stimulations including metformin and AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide). ATP levels were elevated and mitochondrial function was increased in Flcn-deficient hearts, suggesting that excess energy resulting from up-regulated mitochondrial metabolism under Flcn deficiency might attenuate AMPK activation. Expression of Ppargc1a, a central molecule for mitochondrial metabolism, was increased in Flcn-deficient hearts and indeed, inactivation of Ppargc1a in Flcn-deficient hearts significantly reduced heart mass and prolonged survival. Ppargc1a inactivation restored phospho-AMPK-alpha levels and suppressed mTORC1 activity in Flcn-deficient hearts, suggesting that up-regulated Ppargc1a confers increased mitochondrial metabolism and excess energy, leading to inactivation of AMPK and activation of mTORC1. Rapamycin treatment did not affect the heart size of Flcn/Ppargc1a doubly inactivated hearts, further supporting the idea that Ppargc1a is the critical element leading to deregulation of the AMPK-mTOR-axis and resulting in cardiac hypertrophy under Flcn deficiency. These data support an important role for Flcn in cardiac homeostasis in the murine model.</description><subject>Adenosine Triphosphate - biosynthesis</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Cardiomegaly - complications</subject><subject>Cardiomegaly - drug therapy</subject><subject>Cardiomegaly - genetics</subject><subject>Cardiomegaly - metabolism</subject><subject>Cardiomegaly - pathology</subject><subject>Cell Line</subject><subject>Disease Models, Animal</subject><subject>Enzyme Activation</subject><subject>Estrone - genetics</subject><subject>Gene Silencing</subject><subject>Heart Failure - etiology</subject><subject>Heart Failure - pathology</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mitochondrial Turnover</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Organ Size - drug effects</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Phosphorylation</subject><subject>Signal Transduction</subject><subject>Sirolimus - pharmacology</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Ventricular Function - drug effects</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1LAzEQhoMoWj8u_gDJUYXVySYmm4sgxapQEKReDdlsthvJbmqyW-i_t9oqeprDPO87Aw9CpwSuCEh63bTz66oa8oLvoBFhHLIcCrqLRiA5y7gEfoAOU3oHIJxRsY8Ociah4AJG6G0SvHdm8K7D5xNvugvsOm16t9S9Cx32VlcJ9wG3Q3SdxUbHymmDm9XCxj6GRbPCfRPDMG9wO3t-GRNc2Wjng__OH6O9WvtkT7bzCL1O7mfjx2z6_PA0vptmhjHWZ6U22rIbA7koOC_ySlZ1LZjIobbMaKIFUJILKMUNNULrXFKQtiyFoISXtqBH6HbTuxjK1lbGdn3UXi2ia3VcqaCd-r_pXKPmYakYKaQEti443xbE8DHY1KvWJWO9150NQ1KEExCcEQ5r9HKDmhhSirb-PUNAfQlRayFqI2QNn_197Bf9MUA_AU8QiaI</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Hasumi, Yukiko</creator><creator>Baba, Masaya</creator><creator>Hasumi, Hisashi</creator><creator>Huang, Ying</creator><creator>Lang, Martin</creator><creator>Reindorf, Rachel</creator><creator>Oh, Hyoung-bin</creator><creator>Sciarretta, Sebastiano</creator><creator>Nagashima, Kunio</creator><creator>Haines, Diana C</creator><creator>Schneider, Michael D</creator><creator>Adelstein, Robert S</creator><creator>Schmidt, Laura S</creator><creator>Sadoshima, Junichi</creator><creator>Marston Linehan, W</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141101</creationdate><title>Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation</title><author>Hasumi, Yukiko ; Baba, Masaya ; Hasumi, Hisashi ; Huang, Ying ; Lang, Martin ; Reindorf, Rachel ; Oh, Hyoung-bin ; Sciarretta, Sebastiano ; Nagashima, Kunio ; Haines, Diana C ; Schneider, Michael D ; Adelstein, Robert S ; Schmidt, Laura S ; Sadoshima, Junichi ; Marston Linehan, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-bacae45c02786682d9dff74720fe4ca1a7031270b753c7aa29309ebb77316be83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenosine Triphosphate - biosynthesis</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Cardiomegaly - complications</topic><topic>Cardiomegaly - drug therapy</topic><topic>Cardiomegaly - genetics</topic><topic>Cardiomegaly - metabolism</topic><topic>Cardiomegaly - pathology</topic><topic>Cell Line</topic><topic>Disease Models, Animal</topic><topic>Enzyme Activation</topic><topic>Estrone - genetics</topic><topic>Gene Silencing</topic><topic>Heart Failure - etiology</topic><topic>Heart Failure - pathology</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mitochondrial Turnover</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Organ Size - drug effects</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Phosphorylation</topic><topic>Signal Transduction</topic><topic>Sirolimus - pharmacology</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Ventricular Function - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasumi, Yukiko</creatorcontrib><creatorcontrib>Baba, Masaya</creatorcontrib><creatorcontrib>Hasumi, Hisashi</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Lang, Martin</creatorcontrib><creatorcontrib>Reindorf, Rachel</creatorcontrib><creatorcontrib>Oh, Hyoung-bin</creatorcontrib><creatorcontrib>Sciarretta, Sebastiano</creatorcontrib><creatorcontrib>Nagashima, Kunio</creatorcontrib><creatorcontrib>Haines, Diana C</creatorcontrib><creatorcontrib>Schneider, Michael D</creatorcontrib><creatorcontrib>Adelstein, Robert S</creatorcontrib><creatorcontrib>Schmidt, Laura S</creatorcontrib><creatorcontrib>Sadoshima, Junichi</creatorcontrib><creatorcontrib>Marston Linehan, W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasumi, Yukiko</au><au>Baba, Masaya</au><au>Hasumi, Hisashi</au><au>Huang, Ying</au><au>Lang, Martin</au><au>Reindorf, Rachel</au><au>Oh, Hyoung-bin</au><au>Sciarretta, Sebastiano</au><au>Nagashima, Kunio</au><au>Haines, Diana C</au><au>Schneider, Michael D</au><au>Adelstein, Robert S</au><au>Schmidt, Laura S</au><au>Sadoshima, Junichi</au><au>Marston Linehan, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>23</volume><issue>21</issue><spage>5706</spage><epage>5719</epage><pages>5706-5719</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Cardiac hypertrophy, an adaptive process that responds to increased wall stress, is characterized by the enlargement of cardiomyocytes and structural remodeling. It is stimulated by various growth signals, of which the mTORC1 pathway is a well-recognized source. Here, we show that loss of Flcn, a novel AMPK-mTOR interacting molecule, causes severe cardiac hypertrophy with deregulated energy homeostasis leading to dilated cardiomyopathy in mice. We found that mTORC1 activity was upregulated in Flcn-deficient hearts, and that rapamycin treatment significantly reduced heart mass and ameliorated cardiac dysfunction. Phospho-AMP-activated protein kinase (AMPK)-alpha (T172) was reduced in Flcn-deficient hearts and nonresponsive to various stimulations including metformin and AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide). ATP levels were elevated and mitochondrial function was increased in Flcn-deficient hearts, suggesting that excess energy resulting from up-regulated mitochondrial metabolism under Flcn deficiency might attenuate AMPK activation. Expression of Ppargc1a, a central molecule for mitochondrial metabolism, was increased in Flcn-deficient hearts and indeed, inactivation of Ppargc1a in Flcn-deficient hearts significantly reduced heart mass and prolonged survival. Ppargc1a inactivation restored phospho-AMPK-alpha levels and suppressed mTORC1 activity in Flcn-deficient hearts, suggesting that up-regulated Ppargc1a confers increased mitochondrial metabolism and excess energy, leading to inactivation of AMPK and activation of mTORC1. Rapamycin treatment did not affect the heart size of Flcn/Ppargc1a doubly inactivated hearts, further supporting the idea that Ppargc1a is the critical element leading to deregulation of the AMPK-mTOR-axis and resulting in cardiac hypertrophy under Flcn deficiency. These data support an important role for Flcn in cardiac homeostasis in the murine model.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>24908670</pmid><doi>10.1093/hmg/ddu286</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2014-11, Vol.23 (21), p.5706-5719
issn 0964-6906
1460-2083
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4189904
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Adenosine Triphosphate - biosynthesis
AMP-Activated Protein Kinases - metabolism
Animals
Cardiomegaly - complications
Cardiomegaly - drug therapy
Cardiomegaly - genetics
Cardiomegaly - metabolism
Cardiomegaly - pathology
Cell Line
Disease Models, Animal
Enzyme Activation
Estrone - genetics
Gene Silencing
Heart Failure - etiology
Heart Failure - pathology
Mechanistic Target of Rapamycin Complex 1
Mice
Mice, Transgenic
Mitochondrial Turnover
Multiprotein Complexes - metabolism
Organ Size - drug effects
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Phosphorylation
Signal Transduction
Sirolimus - pharmacology
TOR Serine-Threonine Kinases - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Ventricular Function - drug effects
title Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folliculin%20(Flcn)%20inactivation%20leads%20to%20murine%20cardiac%20hypertrophy%20through%20mTORC1%20deregulation&rft.jtitle=Human%20molecular%20genetics&rft.au=Hasumi,%20Yukiko&rft.date=2014-11-01&rft.volume=23&rft.issue=21&rft.spage=5706&rft.epage=5719&rft.pages=5706-5719&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddu286&rft_dat=%3Cproquest_pubme%3E1610764160%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1610764160&rft_id=info:pmid/24908670&rfr_iscdi=true