Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice

Claudins are a family of transmembrane proteins that are required for tight junction formation. Claudin (CLDN)-18.1, the only known lung-specific tight junction protein, is the most abundant claudin in alveolar epithelial type (AT) 1 cells, and is regulated by lung maturational agonists and inflamma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of respiratory cell and molecular biology 2014-10, Vol.51 (4), p.550-550
Hauptverfasser: LaFemina, Michael J, Sutherland, Katherine M, Bentley, Trevor, Gonzales, Linda W, Allen, Lennell, Chapin, Cheryl J, Rokkam, Deepti, Sweerus, Kelly A, Dobbs, Leland G, Ballard, Philip L, Frank, James A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 550
container_issue 4
container_start_page 550
container_title American journal of respiratory cell and molecular biology
container_volume 51
creator LaFemina, Michael J
Sutherland, Katherine M
Bentley, Trevor
Gonzales, Linda W
Allen, Lennell
Chapin, Cheryl J
Rokkam, Deepti
Sweerus, Kelly A
Dobbs, Leland G
Ballard, Philip L
Frank, James A
description Claudins are a family of transmembrane proteins that are required for tight junction formation. Claudin (CLDN)-18.1, the only known lung-specific tight junction protein, is the most abundant claudin in alveolar epithelial type (AT) 1 cells, and is regulated by lung maturational agonists and inflammatory mediators. To determine the function of CLDN18 in the alveolar epithelium, CLDN18 knockout (KO) mice were generated and studied by histological, biochemical, and physiological approaches, in addition to whole-genome microarray. Alveolar epithelial barrier function was assessed after knockdown of CLDN18 in isolated lung cells. CLDN18 levels were measured by quantitative PCR in lung samples from fetal and postnatal human infants. We found that CLDN18 deficiency impaired alveolar epithelial barrier function in vivo and in vitro, with evidence of increased paracellular permeability and architectural distortion at AT1-AT1 cell junctions. Although CLDN18 KO mice were born without evidence of a lung abnormality, histological and gene expression analysis at Postnatal Day 3 and Week 4 identified impaired alveolarization. CLDN18 KO mice also had evidence of postnatal lung injury, including acquired AT1 cell damage. Human fetal lungs at 23-24 weeks gestational age, the highest-risk period for developing bronchopulmonary dysplasia, a disease of impaired alveolarization, had significantly lower CLDN18 expression relative to postnatal lungs. Thus, CLDN18 deficiency results in epithelial barrier dysfunction, injury, and impaired alveolarization in mice. Low expression of CLDN18 in human fetal lungs supports further investigation into a role for this tight junction protein in bronchopulmonary dysplasia.
doi_str_mv 10.1165/rcmb.2013-0456OC
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4189483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1622605421</sourcerecordid><originalsourceid>FETCH-LOGICAL-p224t-7ef0caf770141e6cae3817324bff993c65affeacef4ba60013a8998dc69bd5f13</originalsourceid><addsrcrecordid>eNpdUE1r3DAQFSWh-bznFAy55OJEI8mydCmUJWkKC7m0ZzOWR1sttryV7MD--zjptrQ9zcB78-a9x9gV8DsAXd0nN7R3goMsuar08-oDO4VKVqWyxh4tO1eqhErZE3aW85ZzEAbgIzsRqja10vKU4arHuQuxBFN05IMLFN2-SJTnfspFiAX2LzT2mIoWUwqUim6f_RzdFMYFjF0Rhh2GRN2BOW4oUg7vt0NwdMGOPfaZLg_znH1_fPi2eirXz1--rj6vy50Qaipr8tyhr2sOCkg7JGmglkK13lsrna7Qe0JHXrWolygSjbWmc9q2XeVBnrNPv3R3cztQ5yhOCftml8KAad-MGJp_kRh-NJvxpVFgrDJyEbg9CKTx50x5aoaQHfU9Rhrn3IAWQvNKibdfN_9Rt-Oc4hJvYYFaareiXljXfzv6Y-V3-_IVDl6KHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1614044927</pqid></control><display><type>article</type><title>Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>LaFemina, Michael J ; Sutherland, Katherine M ; Bentley, Trevor ; Gonzales, Linda W ; Allen, Lennell ; Chapin, Cheryl J ; Rokkam, Deepti ; Sweerus, Kelly A ; Dobbs, Leland G ; Ballard, Philip L ; Frank, James A</creator><creatorcontrib>LaFemina, Michael J ; Sutherland, Katherine M ; Bentley, Trevor ; Gonzales, Linda W ; Allen, Lennell ; Chapin, Cheryl J ; Rokkam, Deepti ; Sweerus, Kelly A ; Dobbs, Leland G ; Ballard, Philip L ; Frank, James A</creatorcontrib><description>Claudins are a family of transmembrane proteins that are required for tight junction formation. Claudin (CLDN)-18.1, the only known lung-specific tight junction protein, is the most abundant claudin in alveolar epithelial type (AT) 1 cells, and is regulated by lung maturational agonists and inflammatory mediators. To determine the function of CLDN18 in the alveolar epithelium, CLDN18 knockout (KO) mice were generated and studied by histological, biochemical, and physiological approaches, in addition to whole-genome microarray. Alveolar epithelial barrier function was assessed after knockdown of CLDN18 in isolated lung cells. CLDN18 levels were measured by quantitative PCR in lung samples from fetal and postnatal human infants. We found that CLDN18 deficiency impaired alveolar epithelial barrier function in vivo and in vitro, with evidence of increased paracellular permeability and architectural distortion at AT1-AT1 cell junctions. Although CLDN18 KO mice were born without evidence of a lung abnormality, histological and gene expression analysis at Postnatal Day 3 and Week 4 identified impaired alveolarization. CLDN18 KO mice also had evidence of postnatal lung injury, including acquired AT1 cell damage. Human fetal lungs at 23-24 weeks gestational age, the highest-risk period for developing bronchopulmonary dysplasia, a disease of impaired alveolarization, had significantly lower CLDN18 expression relative to postnatal lungs. Thus, CLDN18 deficiency results in epithelial barrier dysfunction, injury, and impaired alveolarization in mice. Low expression of CLDN18 in human fetal lungs supports further investigation into a role for this tight junction protein in bronchopulmonary dysplasia.</description><identifier>ISSN: 1044-1549</identifier><identifier>EISSN: 1535-4989</identifier><identifier>DOI: 10.1165/rcmb.2013-0456OC</identifier><identifier>PMID: 24787463</identifier><language>eng</language><publisher>United States: American Thoracic Society</publisher><subject>Age ; Animals ; Bronchopulmonary Dysplasia - genetics ; Bronchopulmonary Dysplasia - metabolism ; Bronchopulmonary Dysplasia - pathology ; Cell adhesion &amp; migration ; Claudins - deficiency ; Claudins - genetics ; Claudins - metabolism ; Gene expression ; Gene Expression Regulation, Developmental ; Gestational Age ; Humans ; Infant ; Infant, Newborn ; Laboratories ; Lung diseases ; Lungs ; Mice, Inbred C57BL ; Mice, Knockout ; Original Research ; Permeability ; Premature birth ; Proteins ; Pulmonary Alveoli - embryology ; Pulmonary Alveoli - growth &amp; development ; Pulmonary Alveoli - metabolism ; Pulmonary Alveoli - pathology ; Risk Factors ; Rodents ; Small intestine ; Studies ; Tight Junctions - metabolism ; Tight Junctions - pathology</subject><ispartof>American journal of respiratory cell and molecular biology, 2014-10, Vol.51 (4), p.550-550</ispartof><rights>Copyright American Thoracic Society Oct 2014</rights><rights>Copyright © 2014 by the American Thoracic Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24787463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LaFemina, Michael J</creatorcontrib><creatorcontrib>Sutherland, Katherine M</creatorcontrib><creatorcontrib>Bentley, Trevor</creatorcontrib><creatorcontrib>Gonzales, Linda W</creatorcontrib><creatorcontrib>Allen, Lennell</creatorcontrib><creatorcontrib>Chapin, Cheryl J</creatorcontrib><creatorcontrib>Rokkam, Deepti</creatorcontrib><creatorcontrib>Sweerus, Kelly A</creatorcontrib><creatorcontrib>Dobbs, Leland G</creatorcontrib><creatorcontrib>Ballard, Philip L</creatorcontrib><creatorcontrib>Frank, James A</creatorcontrib><title>Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice</title><title>American journal of respiratory cell and molecular biology</title><addtitle>Am J Respir Cell Mol Biol</addtitle><description>Claudins are a family of transmembrane proteins that are required for tight junction formation. Claudin (CLDN)-18.1, the only known lung-specific tight junction protein, is the most abundant claudin in alveolar epithelial type (AT) 1 cells, and is regulated by lung maturational agonists and inflammatory mediators. To determine the function of CLDN18 in the alveolar epithelium, CLDN18 knockout (KO) mice were generated and studied by histological, biochemical, and physiological approaches, in addition to whole-genome microarray. Alveolar epithelial barrier function was assessed after knockdown of CLDN18 in isolated lung cells. CLDN18 levels were measured by quantitative PCR in lung samples from fetal and postnatal human infants. We found that CLDN18 deficiency impaired alveolar epithelial barrier function in vivo and in vitro, with evidence of increased paracellular permeability and architectural distortion at AT1-AT1 cell junctions. Although CLDN18 KO mice were born without evidence of a lung abnormality, histological and gene expression analysis at Postnatal Day 3 and Week 4 identified impaired alveolarization. CLDN18 KO mice also had evidence of postnatal lung injury, including acquired AT1 cell damage. Human fetal lungs at 23-24 weeks gestational age, the highest-risk period for developing bronchopulmonary dysplasia, a disease of impaired alveolarization, had significantly lower CLDN18 expression relative to postnatal lungs. Thus, CLDN18 deficiency results in epithelial barrier dysfunction, injury, and impaired alveolarization in mice. Low expression of CLDN18 in human fetal lungs supports further investigation into a role for this tight junction protein in bronchopulmonary dysplasia.</description><subject>Age</subject><subject>Animals</subject><subject>Bronchopulmonary Dysplasia - genetics</subject><subject>Bronchopulmonary Dysplasia - metabolism</subject><subject>Bronchopulmonary Dysplasia - pathology</subject><subject>Cell adhesion &amp; migration</subject><subject>Claudins - deficiency</subject><subject>Claudins - genetics</subject><subject>Claudins - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gestational Age</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Laboratories</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Original Research</subject><subject>Permeability</subject><subject>Premature birth</subject><subject>Proteins</subject><subject>Pulmonary Alveoli - embryology</subject><subject>Pulmonary Alveoli - growth &amp; development</subject><subject>Pulmonary Alveoli - metabolism</subject><subject>Pulmonary Alveoli - pathology</subject><subject>Risk Factors</subject><subject>Rodents</subject><subject>Small intestine</subject><subject>Studies</subject><subject>Tight Junctions - metabolism</subject><subject>Tight Junctions - pathology</subject><issn>1044-1549</issn><issn>1535-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdUE1r3DAQFSWh-bznFAy55OJEI8mydCmUJWkKC7m0ZzOWR1sttryV7MD--zjptrQ9zcB78-a9x9gV8DsAXd0nN7R3goMsuar08-oDO4VKVqWyxh4tO1eqhErZE3aW85ZzEAbgIzsRqja10vKU4arHuQuxBFN05IMLFN2-SJTnfspFiAX2LzT2mIoWUwqUim6f_RzdFMYFjF0Rhh2GRN2BOW4oUg7vt0NwdMGOPfaZLg_znH1_fPi2eirXz1--rj6vy50Qaipr8tyhr2sOCkg7JGmglkK13lsrna7Qe0JHXrWolygSjbWmc9q2XeVBnrNPv3R3cztQ5yhOCftml8KAad-MGJp_kRh-NJvxpVFgrDJyEbg9CKTx50x5aoaQHfU9Rhrn3IAWQvNKibdfN_9Rt-Oc4hJvYYFaareiXljXfzv6Y-V3-_IVDl6KHA</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>LaFemina, Michael J</creator><creator>Sutherland, Katherine M</creator><creator>Bentley, Trevor</creator><creator>Gonzales, Linda W</creator><creator>Allen, Lennell</creator><creator>Chapin, Cheryl J</creator><creator>Rokkam, Deepti</creator><creator>Sweerus, Kelly A</creator><creator>Dobbs, Leland G</creator><creator>Ballard, Philip L</creator><creator>Frank, James A</creator><general>American Thoracic Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>201410</creationdate><title>Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice</title><author>LaFemina, Michael J ; Sutherland, Katherine M ; Bentley, Trevor ; Gonzales, Linda W ; Allen, Lennell ; Chapin, Cheryl J ; Rokkam, Deepti ; Sweerus, Kelly A ; Dobbs, Leland G ; Ballard, Philip L ; Frank, James A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p224t-7ef0caf770141e6cae3817324bff993c65affeacef4ba60013a8998dc69bd5f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Age</topic><topic>Animals</topic><topic>Bronchopulmonary Dysplasia - genetics</topic><topic>Bronchopulmonary Dysplasia - metabolism</topic><topic>Bronchopulmonary Dysplasia - pathology</topic><topic>Cell adhesion &amp; migration</topic><topic>Claudins - deficiency</topic><topic>Claudins - genetics</topic><topic>Claudins - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gestational Age</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Laboratories</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Original Research</topic><topic>Permeability</topic><topic>Premature birth</topic><topic>Proteins</topic><topic>Pulmonary Alveoli - embryology</topic><topic>Pulmonary Alveoli - growth &amp; development</topic><topic>Pulmonary Alveoli - metabolism</topic><topic>Pulmonary Alveoli - pathology</topic><topic>Risk Factors</topic><topic>Rodents</topic><topic>Small intestine</topic><topic>Studies</topic><topic>Tight Junctions - metabolism</topic><topic>Tight Junctions - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LaFemina, Michael J</creatorcontrib><creatorcontrib>Sutherland, Katherine M</creatorcontrib><creatorcontrib>Bentley, Trevor</creatorcontrib><creatorcontrib>Gonzales, Linda W</creatorcontrib><creatorcontrib>Allen, Lennell</creatorcontrib><creatorcontrib>Chapin, Cheryl J</creatorcontrib><creatorcontrib>Rokkam, Deepti</creatorcontrib><creatorcontrib>Sweerus, Kelly A</creatorcontrib><creatorcontrib>Dobbs, Leland G</creatorcontrib><creatorcontrib>Ballard, Philip L</creatorcontrib><creatorcontrib>Frank, James A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of respiratory cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LaFemina, Michael J</au><au>Sutherland, Katherine M</au><au>Bentley, Trevor</au><au>Gonzales, Linda W</au><au>Allen, Lennell</au><au>Chapin, Cheryl J</au><au>Rokkam, Deepti</au><au>Sweerus, Kelly A</au><au>Dobbs, Leland G</au><au>Ballard, Philip L</au><au>Frank, James A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice</atitle><jtitle>American journal of respiratory cell and molecular biology</jtitle><addtitle>Am J Respir Cell Mol Biol</addtitle><date>2014-10</date><risdate>2014</risdate><volume>51</volume><issue>4</issue><spage>550</spage><epage>550</epage><pages>550-550</pages><issn>1044-1549</issn><eissn>1535-4989</eissn><abstract>Claudins are a family of transmembrane proteins that are required for tight junction formation. Claudin (CLDN)-18.1, the only known lung-specific tight junction protein, is the most abundant claudin in alveolar epithelial type (AT) 1 cells, and is regulated by lung maturational agonists and inflammatory mediators. To determine the function of CLDN18 in the alveolar epithelium, CLDN18 knockout (KO) mice were generated and studied by histological, biochemical, and physiological approaches, in addition to whole-genome microarray. Alveolar epithelial barrier function was assessed after knockdown of CLDN18 in isolated lung cells. CLDN18 levels were measured by quantitative PCR in lung samples from fetal and postnatal human infants. We found that CLDN18 deficiency impaired alveolar epithelial barrier function in vivo and in vitro, with evidence of increased paracellular permeability and architectural distortion at AT1-AT1 cell junctions. Although CLDN18 KO mice were born without evidence of a lung abnormality, histological and gene expression analysis at Postnatal Day 3 and Week 4 identified impaired alveolarization. CLDN18 KO mice also had evidence of postnatal lung injury, including acquired AT1 cell damage. Human fetal lungs at 23-24 weeks gestational age, the highest-risk period for developing bronchopulmonary dysplasia, a disease of impaired alveolarization, had significantly lower CLDN18 expression relative to postnatal lungs. Thus, CLDN18 deficiency results in epithelial barrier dysfunction, injury, and impaired alveolarization in mice. Low expression of CLDN18 in human fetal lungs supports further investigation into a role for this tight junction protein in bronchopulmonary dysplasia.</abstract><cop>United States</cop><pub>American Thoracic Society</pub><pmid>24787463</pmid><doi>10.1165/rcmb.2013-0456OC</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1044-1549
ispartof American journal of respiratory cell and molecular biology, 2014-10, Vol.51 (4), p.550-550
issn 1044-1549
1535-4989
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4189483
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Journals@Ovid Complete
subjects Age
Animals
Bronchopulmonary Dysplasia - genetics
Bronchopulmonary Dysplasia - metabolism
Bronchopulmonary Dysplasia - pathology
Cell adhesion & migration
Claudins - deficiency
Claudins - genetics
Claudins - metabolism
Gene expression
Gene Expression Regulation, Developmental
Gestational Age
Humans
Infant
Infant, Newborn
Laboratories
Lung diseases
Lungs
Mice, Inbred C57BL
Mice, Knockout
Original Research
Permeability
Premature birth
Proteins
Pulmonary Alveoli - embryology
Pulmonary Alveoli - growth & development
Pulmonary Alveoli - metabolism
Pulmonary Alveoli - pathology
Risk Factors
Rodents
Small intestine
Studies
Tight Junctions - metabolism
Tight Junctions - pathology
title Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Claudin-18%20deficiency%20results%20in%20alveolar%20barrier%20dysfunction%20and%20impaired%20alveologenesis%20in%20mice&rft.jtitle=American%20journal%20of%20respiratory%20cell%20and%20molecular%20biology&rft.au=LaFemina,%20Michael%20J&rft.date=2014-10&rft.volume=51&rft.issue=4&rft.spage=550&rft.epage=550&rft.pages=550-550&rft.issn=1044-1549&rft.eissn=1535-4989&rft_id=info:doi/10.1165/rcmb.2013-0456OC&rft_dat=%3Cproquest_pubme%3E1622605421%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1614044927&rft_id=info:pmid/24787463&rfr_iscdi=true