Multi-scale approach for the rheological characteristics of emulsions using molecular dynamics and lattice Boltzmann method

An emulsion system was simulated under simple shear rates to analyze its rheological characteristics using a hierarchical multi-scale approach. The molecular dynamics (MD) simulation was used to describe the interface of droplets in an emulsion. The equations derived from the MD simulation relative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomicrofluidics 2014-09, Vol.8 (5), p.052104-052104
Hauptverfasser: Choi, Se Bin, Yoon, Hong Min, Lee, Joon Sang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 052104
container_issue 5
container_start_page 052104
container_title Biomicrofluidics
container_volume 8
creator Choi, Se Bin
Yoon, Hong Min
Lee, Joon Sang
description An emulsion system was simulated under simple shear rates to analyze its rheological characteristics using a hierarchical multi-scale approach. The molecular dynamics (MD) simulation was used to describe the interface of droplets in an emulsion. The equations derived from the MD simulation relative to interfacial tension, temperature, and surfactant concentration were applied as input parameters within lattice Boltzmann method (LBM) calculations. In the LBM simulation, we calculated the relative viscosity of an emulsion under a simple shear rate along with changes in temperature, shear rate, and surfactant concentration. The equations from the MD simulation showed that the interfacial tension of the droplets tended to decrease with an increase in temperature and surfactant concentration. The relative viscosity from the LBM simulation decreased with an increase in temperature. The shear thinning phenomena explaining the inverse proportion between shear rate and viscosity were observed. An increase in the surfactant concentration caused an increase in the relative viscosity for a decane-in-water emulsion, because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.
doi_str_mv 10.1063/1.4892977
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4189425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126567716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-ce34f6d51933cc6b7916c840b6ba2093a1d3c39edad64cbeb3bd50cf8d6766673</originalsourceid><addsrcrecordid>eNpdkUtv1TAQhS0EouXCgj-ALLGBRYofiZ1skErFSypiA2trYk9uXDn2xXaQCn-eVL1UhdWMdL4ZnZlDyHPOzjhT8g0_a_tBDFo_IKd8kKLhrOsf3utPyJNSrhjruBbiMTkRnZRCS3FKfn9ZQ_VNsRCQwuGQE9iZTinTOiPNM6aQ9n5TqZ0hg62YfaneFpomissaik-x0LX4uKdLCmjXAJm66wjLDQXR0QB1m0D6LoX6a4EY6YJ1Tu4peTRBKPjsWHfk-4f33y4-NZdfP36-OL9srJSyNhZlOynXbddIa9WoB65s37JRjSDYIIE7aeWADpxq7YijHF3H7NQ7pZVSWu7I29u9h3Vc0FmMNUMwh-wXyNcmgTf_KtHPZp9-mpb3Q7v9akdeHRfk9GPFUs3ii8UQIGJai-GKd0IJodmGvvwPvUprjtt5RnChOqU1Vxv1-payOZWScbozw5m5idRwc4x0Y1_cd39H_s1Q_gH8rJ7T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126567716</pqid></control><display><type>article</type><title>Multi-scale approach for the rheological characteristics of emulsions using molecular dynamics and lattice Boltzmann method</title><source>AIP Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Choi, Se Bin ; Yoon, Hong Min ; Lee, Joon Sang</creator><creatorcontrib>Choi, Se Bin ; Yoon, Hong Min ; Lee, Joon Sang</creatorcontrib><description>An emulsion system was simulated under simple shear rates to analyze its rheological characteristics using a hierarchical multi-scale approach. The molecular dynamics (MD) simulation was used to describe the interface of droplets in an emulsion. The equations derived from the MD simulation relative to interfacial tension, temperature, and surfactant concentration were applied as input parameters within lattice Boltzmann method (LBM) calculations. In the LBM simulation, we calculated the relative viscosity of an emulsion under a simple shear rate along with changes in temperature, shear rate, and surfactant concentration. The equations from the MD simulation showed that the interfacial tension of the droplets tended to decrease with an increase in temperature and surfactant concentration. The relative viscosity from the LBM simulation decreased with an increase in temperature. The shear thinning phenomena explaining the inverse proportion between shear rate and viscosity were observed. An increase in the surfactant concentration caused an increase in the relative viscosity for a decane-in-water emulsion, because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/1.4892977</identifier><identifier>PMID: 25332732</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Deformation mechanisms ; Droplets ; Emulsions ; Mathematical analysis ; Molecular dynamics ; Multiscale analysis ; Rheological properties ; Rheology ; Shear rate ; Shear thinning (liquids) ; Simulation ; SPECIAL TOPIC: SELECTED PAPERS FROM THE ADVANCES IN MICROFLUIDICS AND NANOFLUIDICS 2014 CONFERENCE IN HONOR OF PROFESSOR HSUEH-CHIA CHANG'S 60TH BIRTHDAY ; Surface tension ; Surfactants ; Viscosity ; Wall shear stresses</subject><ispartof>Biomicrofluidics, 2014-09, Vol.8 (5), p.052104-052104</ispartof><rights>2014 AIP Publishing LLC.</rights><rights>Copyright © 2014 AIP Publishing LLC 2014 AIP Publishing LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-ce34f6d51933cc6b7916c840b6ba2093a1d3c39edad64cbeb3bd50cf8d6766673</citedby><cites>FETCH-LOGICAL-c333t-ce34f6d51933cc6b7916c840b6ba2093a1d3c39edad64cbeb3bd50cf8d6766673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189425/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189425/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25332732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Se Bin</creatorcontrib><creatorcontrib>Yoon, Hong Min</creatorcontrib><creatorcontrib>Lee, Joon Sang</creatorcontrib><title>Multi-scale approach for the rheological characteristics of emulsions using molecular dynamics and lattice Boltzmann method</title><title>Biomicrofluidics</title><addtitle>Biomicrofluidics</addtitle><description>An emulsion system was simulated under simple shear rates to analyze its rheological characteristics using a hierarchical multi-scale approach. The molecular dynamics (MD) simulation was used to describe the interface of droplets in an emulsion. The equations derived from the MD simulation relative to interfacial tension, temperature, and surfactant concentration were applied as input parameters within lattice Boltzmann method (LBM) calculations. In the LBM simulation, we calculated the relative viscosity of an emulsion under a simple shear rate along with changes in temperature, shear rate, and surfactant concentration. The equations from the MD simulation showed that the interfacial tension of the droplets tended to decrease with an increase in temperature and surfactant concentration. The relative viscosity from the LBM simulation decreased with an increase in temperature. The shear thinning phenomena explaining the inverse proportion between shear rate and viscosity were observed. An increase in the surfactant concentration caused an increase in the relative viscosity for a decane-in-water emulsion, because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.</description><subject>Deformation mechanisms</subject><subject>Droplets</subject><subject>Emulsions</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Multiscale analysis</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear rate</subject><subject>Shear thinning (liquids)</subject><subject>Simulation</subject><subject>SPECIAL TOPIC: SELECTED PAPERS FROM THE ADVANCES IN MICROFLUIDICS AND NANOFLUIDICS 2014 CONFERENCE IN HONOR OF PROFESSOR HSUEH-CHIA CHANG'S 60TH BIRTHDAY</subject><subject>Surface tension</subject><subject>Surfactants</subject><subject>Viscosity</subject><subject>Wall shear stresses</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkUtv1TAQhS0EouXCgj-ALLGBRYofiZ1skErFSypiA2trYk9uXDn2xXaQCn-eVL1UhdWMdL4ZnZlDyHPOzjhT8g0_a_tBDFo_IKd8kKLhrOsf3utPyJNSrhjruBbiMTkRnZRCS3FKfn9ZQ_VNsRCQwuGQE9iZTinTOiPNM6aQ9n5TqZ0hg62YfaneFpomissaik-x0LX4uKdLCmjXAJm66wjLDQXR0QB1m0D6LoX6a4EY6YJ1Tu4peTRBKPjsWHfk-4f33y4-NZdfP36-OL9srJSyNhZlOynXbddIa9WoB65s37JRjSDYIIE7aeWADpxq7YijHF3H7NQ7pZVSWu7I29u9h3Vc0FmMNUMwh-wXyNcmgTf_KtHPZp9-mpb3Q7v9akdeHRfk9GPFUs3ii8UQIGJai-GKd0IJodmGvvwPvUprjtt5RnChOqU1Vxv1-payOZWScbozw5m5idRwc4x0Y1_cd39H_s1Q_gH8rJ7T</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Choi, Se Bin</creator><creator>Yoon, Hong Min</creator><creator>Lee, Joon Sang</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140901</creationdate><title>Multi-scale approach for the rheological characteristics of emulsions using molecular dynamics and lattice Boltzmann method</title><author>Choi, Se Bin ; Yoon, Hong Min ; Lee, Joon Sang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-ce34f6d51933cc6b7916c840b6ba2093a1d3c39edad64cbeb3bd50cf8d6766673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Deformation mechanisms</topic><topic>Droplets</topic><topic>Emulsions</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Multiscale analysis</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear rate</topic><topic>Shear thinning (liquids)</topic><topic>Simulation</topic><topic>SPECIAL TOPIC: SELECTED PAPERS FROM THE ADVANCES IN MICROFLUIDICS AND NANOFLUIDICS 2014 CONFERENCE IN HONOR OF PROFESSOR HSUEH-CHIA CHANG'S 60TH BIRTHDAY</topic><topic>Surface tension</topic><topic>Surfactants</topic><topic>Viscosity</topic><topic>Wall shear stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Se Bin</creatorcontrib><creatorcontrib>Yoon, Hong Min</creatorcontrib><creatorcontrib>Lee, Joon Sang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Se Bin</au><au>Yoon, Hong Min</au><au>Lee, Joon Sang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale approach for the rheological characteristics of emulsions using molecular dynamics and lattice Boltzmann method</atitle><jtitle>Biomicrofluidics</jtitle><addtitle>Biomicrofluidics</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>8</volume><issue>5</issue><spage>052104</spage><epage>052104</epage><pages>052104-052104</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><abstract>An emulsion system was simulated under simple shear rates to analyze its rheological characteristics using a hierarchical multi-scale approach. The molecular dynamics (MD) simulation was used to describe the interface of droplets in an emulsion. The equations derived from the MD simulation relative to interfacial tension, temperature, and surfactant concentration were applied as input parameters within lattice Boltzmann method (LBM) calculations. In the LBM simulation, we calculated the relative viscosity of an emulsion under a simple shear rate along with changes in temperature, shear rate, and surfactant concentration. The equations from the MD simulation showed that the interfacial tension of the droplets tended to decrease with an increase in temperature and surfactant concentration. The relative viscosity from the LBM simulation decreased with an increase in temperature. The shear thinning phenomena explaining the inverse proportion between shear rate and viscosity were observed. An increase in the surfactant concentration caused an increase in the relative viscosity for a decane-in-water emulsion, because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25332732</pmid><doi>10.1063/1.4892977</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-1058
ispartof Biomicrofluidics, 2014-09, Vol.8 (5), p.052104-052104
issn 1932-1058
1932-1058
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4189425
source AIP Journals Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Deformation mechanisms
Droplets
Emulsions
Mathematical analysis
Molecular dynamics
Multiscale analysis
Rheological properties
Rheology
Shear rate
Shear thinning (liquids)
Simulation
SPECIAL TOPIC: SELECTED PAPERS FROM THE ADVANCES IN MICROFLUIDICS AND NANOFLUIDICS 2014 CONFERENCE IN HONOR OF PROFESSOR HSUEH-CHIA CHANG'S 60TH BIRTHDAY
Surface tension
Surfactants
Viscosity
Wall shear stresses
title Multi-scale approach for the rheological characteristics of emulsions using molecular dynamics and lattice Boltzmann method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20approach%20for%20the%20rheological%20characteristics%20of%20emulsions%20using%20molecular%20dynamics%20and%20lattice%20Boltzmann%20method&rft.jtitle=Biomicrofluidics&rft.au=Choi,%20Se%20Bin&rft.date=2014-09-01&rft.volume=8&rft.issue=5&rft.spage=052104&rft.epage=052104&rft.pages=052104-052104&rft.issn=1932-1058&rft.eissn=1932-1058&rft_id=info:doi/10.1063/1.4892977&rft_dat=%3Cproquest_pubme%3E2126567716%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126567716&rft_id=info:pmid/25332732&rfr_iscdi=true