Cohesin’s ATPase Activity Couples Cohesin Loading onto DNA with Smc3 Acetylation

Cohesin mediates sister chromatid cohesion by topologically entrapping sister DNA molecules inside its ring structure. Cohesin is loaded onto DNA by the Scc2/NIPBL-Scc4/MAU2-loading complex in a manner that depends on the adenosine triphosphatase (ATPase) activity of cohesin’s Smc1 and Smc3 subunits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2014-10, Vol.24 (19), p.2228-2237
Hauptverfasser: Ladurner, Rene, Bhaskara, Venugopal, Huis in ’t Veld, Pim J., Davidson, Iain F., Kreidl, Emanuel, Petzold, Georg, Peters, Jan-Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2237
container_issue 19
container_start_page 2228
container_title Current biology
container_volume 24
creator Ladurner, Rene
Bhaskara, Venugopal
Huis in ’t Veld, Pim J.
Davidson, Iain F.
Kreidl, Emanuel
Petzold, Georg
Peters, Jan-Michael
description Cohesin mediates sister chromatid cohesion by topologically entrapping sister DNA molecules inside its ring structure. Cohesin is loaded onto DNA by the Scc2/NIPBL-Scc4/MAU2-loading complex in a manner that depends on the adenosine triphosphatase (ATPase) activity of cohesin’s Smc1 and Smc3 subunits. Subsequent cohesion establishment during DNA replication depends on Smc3 acetylation by Esco1 and Esco2 and on recruitment of sororin, which “locks” cohesin on DNA by inactivating the cohesin release factor Wapl. Human cohesin ATPase mutants associate transiently with DNA in a manner that depends on the loading complex but cannot be stabilized on chromatin by depletion of Wapl. These mutants cannot be acetylated, fail to interact with sororin, and do not mediate cohesion. The absence of Smc3 acetylation in the ATPase mutants is not a consequence of their transient association with DNA but is directly caused by their inability to hydrolyze ATP because acetylation of wild-type cohesin also depends on ATP hydrolysis. Our data indicate that cohesion establishment involves the following steps. First, cohesin transiently associates with DNA in a manner that depends on the loading complex. Subsequently, ATP hydrolysis by cohesin leads to entrapment of DNA and converts Smc3 into a state that can be acetylated. Finally, Smc3 acetylation leads to recruitment of sororin, inhibition of Wapl, and stabilization of cohesin on DNA. Our finding that cohesin’s ATPase activity is required for both cohesin loading and Smc3 acetylation raises the possibility that cohesion establishment is directly coupled to the reaction in which cohesin entraps DNA. [Display omitted] •Cohesin initially interacts with chromatin transiently via the loading complex•Cohesin’s ATPase activity is required for dynamic chromatin-cohesin interactions•Smc3 acetylation does not significantly alter cohesin’s ATPase activity•Cohesin’s ATPase activity is required for Smc3 acetylation Ladurner et al. present evidence that the adenosine triphosphatase (ATPase) activity of the cohesin complex is required for cohesin acetylation, suggesting that sister-chromatid entrapment by cohesin is coupled to the establishment of cohesion.
doi_str_mv 10.1016/j.cub.2014.08.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4188815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982214009890</els_id><sourcerecordid>1635035792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-a0ae19981621dfae9b856b8159f7d3f1243a361e35c195cf556d166f741a9a953</originalsourceid><addsrcrecordid>eNqNkc2O0zAURi0EYkrhAdigLNkk-NqxYwsJqerwJ1WAYFhbrnMzdZXGJXaKuuM1eD2eBI9aRrABVl74fJ_v9SHkMdAKKMhn28pN64pRqCuqKgpwh8xANbqkdS3ukhnVkpZaMXZBHsS4pRSY0vI-uWCCMUoFm5GPy7DB6Icf377HYnH1wUYsFi75g0_HYhmmfY-xODPFKtjWD9dFGFIoLt8tiq8-bYpPO8dzBtOxt8mH4SG519k-4qPzOSefX728Wr4pV-9fv10uVqUT0KTSUougtQLJoO0s6rUScq1A6K5peQes5pZLQC4caOE6IWQLUnZNDVZbLficvDj17qf1DluHQxptb_aj39nxaIL15s-bwW_MdTiYGpTK7-SCp-eCMXyZMCaz89Fh39sBwxQNB1Ezkefj_0RBckG5aDT7D5RqQYXOkTmBE-rGEOOI3e3wQM2NYbM12bC5MWyoMtlwzjz5fevbxC-lGXh-AjD__cHjaKLzODhs_YgumTb4v9T_BL8AtfY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609505916</pqid></control><display><type>article</type><title>Cohesin’s ATPase Activity Couples Cohesin Loading onto DNA with Smc3 Acetylation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ladurner, Rene ; Bhaskara, Venugopal ; Huis in ’t Veld, Pim J. ; Davidson, Iain F. ; Kreidl, Emanuel ; Petzold, Georg ; Peters, Jan-Michael</creator><creatorcontrib>Ladurner, Rene ; Bhaskara, Venugopal ; Huis in ’t Veld, Pim J. ; Davidson, Iain F. ; Kreidl, Emanuel ; Petzold, Georg ; Peters, Jan-Michael</creatorcontrib><description>Cohesin mediates sister chromatid cohesion by topologically entrapping sister DNA molecules inside its ring structure. Cohesin is loaded onto DNA by the Scc2/NIPBL-Scc4/MAU2-loading complex in a manner that depends on the adenosine triphosphatase (ATPase) activity of cohesin’s Smc1 and Smc3 subunits. Subsequent cohesion establishment during DNA replication depends on Smc3 acetylation by Esco1 and Esco2 and on recruitment of sororin, which “locks” cohesin on DNA by inactivating the cohesin release factor Wapl. Human cohesin ATPase mutants associate transiently with DNA in a manner that depends on the loading complex but cannot be stabilized on chromatin by depletion of Wapl. These mutants cannot be acetylated, fail to interact with sororin, and do not mediate cohesion. The absence of Smc3 acetylation in the ATPase mutants is not a consequence of their transient association with DNA but is directly caused by their inability to hydrolyze ATP because acetylation of wild-type cohesin also depends on ATP hydrolysis. Our data indicate that cohesion establishment involves the following steps. First, cohesin transiently associates with DNA in a manner that depends on the loading complex. Subsequently, ATP hydrolysis by cohesin leads to entrapment of DNA and converts Smc3 into a state that can be acetylated. Finally, Smc3 acetylation leads to recruitment of sororin, inhibition of Wapl, and stabilization of cohesin on DNA. Our finding that cohesin’s ATPase activity is required for both cohesin loading and Smc3 acetylation raises the possibility that cohesion establishment is directly coupled to the reaction in which cohesin entraps DNA. [Display omitted] •Cohesin initially interacts with chromatin transiently via the loading complex•Cohesin’s ATPase activity is required for dynamic chromatin-cohesin interactions•Smc3 acetylation does not significantly alter cohesin’s ATPase activity•Cohesin’s ATPase activity is required for Smc3 acetylation Ladurner et al. present evidence that the adenosine triphosphatase (ATPase) activity of the cohesin complex is required for cohesin acetylation, suggesting that sister-chromatid entrapment by cohesin is coupled to the establishment of cohesion.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2014.08.011</identifier><identifier>PMID: 25220052</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>acetylation ; Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; adenosinetriphosphatase ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Chondroitin Sulfate Proteoglycans - metabolism ; chromatids ; chromatin ; Chromatin - metabolism ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Cohesins ; cohesion ; DNA ; DNA replication ; DNA-Binding Proteins ; Gene Expression Regulation ; Humans ; Hydrolysis ; Intercellular Signaling Peptides and Proteins - genetics ; Intercellular Signaling Peptides and Proteins - metabolism ; Mutation ; Proteins - genetics ; Proteins - metabolism ; Sister Chromatid Exchange</subject><ispartof>Current biology, 2014-10, Vol.24 (19), p.2228-2237</ispartof><rights>2014 The Authors</rights><rights>Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2014 The Authors 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-a0ae19981621dfae9b856b8159f7d3f1243a361e35c195cf556d166f741a9a953</citedby><cites>FETCH-LOGICAL-c517t-a0ae19981621dfae9b856b8159f7d3f1243a361e35c195cf556d166f741a9a953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982214009890$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25220052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ladurner, Rene</creatorcontrib><creatorcontrib>Bhaskara, Venugopal</creatorcontrib><creatorcontrib>Huis in ’t Veld, Pim J.</creatorcontrib><creatorcontrib>Davidson, Iain F.</creatorcontrib><creatorcontrib>Kreidl, Emanuel</creatorcontrib><creatorcontrib>Petzold, Georg</creatorcontrib><creatorcontrib>Peters, Jan-Michael</creatorcontrib><title>Cohesin’s ATPase Activity Couples Cohesin Loading onto DNA with Smc3 Acetylation</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Cohesin mediates sister chromatid cohesion by topologically entrapping sister DNA molecules inside its ring structure. Cohesin is loaded onto DNA by the Scc2/NIPBL-Scc4/MAU2-loading complex in a manner that depends on the adenosine triphosphatase (ATPase) activity of cohesin’s Smc1 and Smc3 subunits. Subsequent cohesion establishment during DNA replication depends on Smc3 acetylation by Esco1 and Esco2 and on recruitment of sororin, which “locks” cohesin on DNA by inactivating the cohesin release factor Wapl. Human cohesin ATPase mutants associate transiently with DNA in a manner that depends on the loading complex but cannot be stabilized on chromatin by depletion of Wapl. These mutants cannot be acetylated, fail to interact with sororin, and do not mediate cohesion. The absence of Smc3 acetylation in the ATPase mutants is not a consequence of their transient association with DNA but is directly caused by their inability to hydrolyze ATP because acetylation of wild-type cohesin also depends on ATP hydrolysis. Our data indicate that cohesion establishment involves the following steps. First, cohesin transiently associates with DNA in a manner that depends on the loading complex. Subsequently, ATP hydrolysis by cohesin leads to entrapment of DNA and converts Smc3 into a state that can be acetylated. Finally, Smc3 acetylation leads to recruitment of sororin, inhibition of Wapl, and stabilization of cohesin on DNA. Our finding that cohesin’s ATPase activity is required for both cohesin loading and Smc3 acetylation raises the possibility that cohesion establishment is directly coupled to the reaction in which cohesin entraps DNA. [Display omitted] •Cohesin initially interacts with chromatin transiently via the loading complex•Cohesin’s ATPase activity is required for dynamic chromatin-cohesin interactions•Smc3 acetylation does not significantly alter cohesin’s ATPase activity•Cohesin’s ATPase activity is required for Smc3 acetylation Ladurner et al. present evidence that the adenosine triphosphatase (ATPase) activity of the cohesin complex is required for cohesin acetylation, suggesting that sister-chromatid entrapment by cohesin is coupled to the establishment of cohesion.</description><subject>acetylation</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>adenosinetriphosphatase</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chondroitin Sulfate Proteoglycans - metabolism</subject><subject>chromatids</subject><subject>chromatin</subject><subject>Chromatin - metabolism</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Cohesins</subject><subject>cohesion</subject><subject>DNA</subject><subject>DNA replication</subject><subject>DNA-Binding Proteins</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Intercellular Signaling Peptides and Proteins - genetics</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Mutation</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Sister Chromatid Exchange</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2O0zAURi0EYkrhAdigLNkk-NqxYwsJqerwJ1WAYFhbrnMzdZXGJXaKuuM1eD2eBI9aRrABVl74fJ_v9SHkMdAKKMhn28pN64pRqCuqKgpwh8xANbqkdS3ukhnVkpZaMXZBHsS4pRSY0vI-uWCCMUoFm5GPy7DB6Icf377HYnH1wUYsFi75g0_HYhmmfY-xODPFKtjWD9dFGFIoLt8tiq8-bYpPO8dzBtOxt8mH4SG519k-4qPzOSefX728Wr4pV-9fv10uVqUT0KTSUougtQLJoO0s6rUScq1A6K5peQes5pZLQC4caOE6IWQLUnZNDVZbLficvDj17qf1DluHQxptb_aj39nxaIL15s-bwW_MdTiYGpTK7-SCp-eCMXyZMCaz89Fh39sBwxQNB1Ezkefj_0RBckG5aDT7D5RqQYXOkTmBE-rGEOOI3e3wQM2NYbM12bC5MWyoMtlwzjz5fevbxC-lGXh-AjD__cHjaKLzODhs_YgumTb4v9T_BL8AtfY</recordid><startdate>20141006</startdate><enddate>20141006</enddate><creator>Ladurner, Rene</creator><creator>Bhaskara, Venugopal</creator><creator>Huis in ’t Veld, Pim J.</creator><creator>Davidson, Iain F.</creator><creator>Kreidl, Emanuel</creator><creator>Petzold, Georg</creator><creator>Peters, Jan-Michael</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20141006</creationdate><title>Cohesin’s ATPase Activity Couples Cohesin Loading onto DNA with Smc3 Acetylation</title><author>Ladurner, Rene ; Bhaskara, Venugopal ; Huis in ’t Veld, Pim J. ; Davidson, Iain F. ; Kreidl, Emanuel ; Petzold, Georg ; Peters, Jan-Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-a0ae19981621dfae9b856b8159f7d3f1243a361e35c195cf556d166f741a9a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>acetylation</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>adenosinetriphosphatase</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chondroitin Sulfate Proteoglycans - metabolism</topic><topic>chromatids</topic><topic>chromatin</topic><topic>Chromatin - metabolism</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Cohesins</topic><topic>cohesion</topic><topic>DNA</topic><topic>DNA replication</topic><topic>DNA-Binding Proteins</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Intercellular Signaling Peptides and Proteins - genetics</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Mutation</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Sister Chromatid Exchange</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ladurner, Rene</creatorcontrib><creatorcontrib>Bhaskara, Venugopal</creatorcontrib><creatorcontrib>Huis in ’t Veld, Pim J.</creatorcontrib><creatorcontrib>Davidson, Iain F.</creatorcontrib><creatorcontrib>Kreidl, Emanuel</creatorcontrib><creatorcontrib>Petzold, Georg</creatorcontrib><creatorcontrib>Peters, Jan-Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ladurner, Rene</au><au>Bhaskara, Venugopal</au><au>Huis in ’t Veld, Pim J.</au><au>Davidson, Iain F.</au><au>Kreidl, Emanuel</au><au>Petzold, Georg</au><au>Peters, Jan-Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cohesin’s ATPase Activity Couples Cohesin Loading onto DNA with Smc3 Acetylation</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2014-10-06</date><risdate>2014</risdate><volume>24</volume><issue>19</issue><spage>2228</spage><epage>2237</epage><pages>2228-2237</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Cohesin mediates sister chromatid cohesion by topologically entrapping sister DNA molecules inside its ring structure. Cohesin is loaded onto DNA by the Scc2/NIPBL-Scc4/MAU2-loading complex in a manner that depends on the adenosine triphosphatase (ATPase) activity of cohesin’s Smc1 and Smc3 subunits. Subsequent cohesion establishment during DNA replication depends on Smc3 acetylation by Esco1 and Esco2 and on recruitment of sororin, which “locks” cohesin on DNA by inactivating the cohesin release factor Wapl. Human cohesin ATPase mutants associate transiently with DNA in a manner that depends on the loading complex but cannot be stabilized on chromatin by depletion of Wapl. These mutants cannot be acetylated, fail to interact with sororin, and do not mediate cohesion. The absence of Smc3 acetylation in the ATPase mutants is not a consequence of their transient association with DNA but is directly caused by their inability to hydrolyze ATP because acetylation of wild-type cohesin also depends on ATP hydrolysis. Our data indicate that cohesion establishment involves the following steps. First, cohesin transiently associates with DNA in a manner that depends on the loading complex. Subsequently, ATP hydrolysis by cohesin leads to entrapment of DNA and converts Smc3 into a state that can be acetylated. Finally, Smc3 acetylation leads to recruitment of sororin, inhibition of Wapl, and stabilization of cohesin on DNA. Our finding that cohesin’s ATPase activity is required for both cohesin loading and Smc3 acetylation raises the possibility that cohesion establishment is directly coupled to the reaction in which cohesin entraps DNA. [Display omitted] •Cohesin initially interacts with chromatin transiently via the loading complex•Cohesin’s ATPase activity is required for dynamic chromatin-cohesin interactions•Smc3 acetylation does not significantly alter cohesin’s ATPase activity•Cohesin’s ATPase activity is required for Smc3 acetylation Ladurner et al. present evidence that the adenosine triphosphatase (ATPase) activity of the cohesin complex is required for cohesin acetylation, suggesting that sister-chromatid entrapment by cohesin is coupled to the establishment of cohesion.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>25220052</pmid><doi>10.1016/j.cub.2014.08.011</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2014-10, Vol.24 (19), p.2228-2237
issn 0960-9822
1879-0445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4188815
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects acetylation
Adenosine Triphosphatases - genetics
Adenosine Triphosphatases - metabolism
adenosinetriphosphatase
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Chondroitin Sulfate Proteoglycans - metabolism
chromatids
chromatin
Chromatin - metabolism
Chromosomal Proteins, Non-Histone - genetics
Chromosomal Proteins, Non-Histone - metabolism
Cohesins
cohesion
DNA
DNA replication
DNA-Binding Proteins
Gene Expression Regulation
Humans
Hydrolysis
Intercellular Signaling Peptides and Proteins - genetics
Intercellular Signaling Peptides and Proteins - metabolism
Mutation
Proteins - genetics
Proteins - metabolism
Sister Chromatid Exchange
title Cohesin’s ATPase Activity Couples Cohesin Loading onto DNA with Smc3 Acetylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cohesin%E2%80%99s%20ATPase%20Activity%20Couples%20Cohesin%20Loading%20onto%20DNA%20with%20Smc3%20Acetylation&rft.jtitle=Current%20biology&rft.au=Ladurner,%20Rene&rft.date=2014-10-06&rft.volume=24&rft.issue=19&rft.spage=2228&rft.epage=2237&rft.pages=2228-2237&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2014.08.011&rft_dat=%3Cproquest_pubme%3E1635035792%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609505916&rft_id=info:pmid/25220052&rft_els_id=S0960982214009890&rfr_iscdi=true