Cohesin’s ATPase Activity Couples Cohesin Loading onto DNA with Smc3 Acetylation
Cohesin mediates sister chromatid cohesion by topologically entrapping sister DNA molecules inside its ring structure. Cohesin is loaded onto DNA by the Scc2/NIPBL-Scc4/MAU2-loading complex in a manner that depends on the adenosine triphosphatase (ATPase) activity of cohesin’s Smc1 and Smc3 subunits...
Gespeichert in:
Veröffentlicht in: | Current biology 2014-10, Vol.24 (19), p.2228-2237 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2237 |
---|---|
container_issue | 19 |
container_start_page | 2228 |
container_title | Current biology |
container_volume | 24 |
creator | Ladurner, Rene Bhaskara, Venugopal Huis in ’t Veld, Pim J. Davidson, Iain F. Kreidl, Emanuel Petzold, Georg Peters, Jan-Michael |
description | Cohesin mediates sister chromatid cohesion by topologically entrapping sister DNA molecules inside its ring structure. Cohesin is loaded onto DNA by the Scc2/NIPBL-Scc4/MAU2-loading complex in a manner that depends on the adenosine triphosphatase (ATPase) activity of cohesin’s Smc1 and Smc3 subunits. Subsequent cohesion establishment during DNA replication depends on Smc3 acetylation by Esco1 and Esco2 and on recruitment of sororin, which “locks” cohesin on DNA by inactivating the cohesin release factor Wapl.
Human cohesin ATPase mutants associate transiently with DNA in a manner that depends on the loading complex but cannot be stabilized on chromatin by depletion of Wapl. These mutants cannot be acetylated, fail to interact with sororin, and do not mediate cohesion. The absence of Smc3 acetylation in the ATPase mutants is not a consequence of their transient association with DNA but is directly caused by their inability to hydrolyze ATP because acetylation of wild-type cohesin also depends on ATP hydrolysis.
Our data indicate that cohesion establishment involves the following steps. First, cohesin transiently associates with DNA in a manner that depends on the loading complex. Subsequently, ATP hydrolysis by cohesin leads to entrapment of DNA and converts Smc3 into a state that can be acetylated. Finally, Smc3 acetylation leads to recruitment of sororin, inhibition of Wapl, and stabilization of cohesin on DNA. Our finding that cohesin’s ATPase activity is required for both cohesin loading and Smc3 acetylation raises the possibility that cohesion establishment is directly coupled to the reaction in which cohesin entraps DNA.
[Display omitted]
•Cohesin initially interacts with chromatin transiently via the loading complex•Cohesin’s ATPase activity is required for dynamic chromatin-cohesin interactions•Smc3 acetylation does not significantly alter cohesin’s ATPase activity•Cohesin’s ATPase activity is required for Smc3 acetylation
Ladurner et al. present evidence that the adenosine triphosphatase (ATPase) activity of the cohesin complex is required for cohesin acetylation, suggesting that sister-chromatid entrapment by cohesin is coupled to the establishment of cohesion. |
doi_str_mv | 10.1016/j.cub.2014.08.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4188815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982214009890</els_id><sourcerecordid>1635035792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-a0ae19981621dfae9b856b8159f7d3f1243a361e35c195cf556d166f741a9a953</originalsourceid><addsrcrecordid>eNqNkc2O0zAURi0EYkrhAdigLNkk-NqxYwsJqerwJ1WAYFhbrnMzdZXGJXaKuuM1eD2eBI9aRrABVl74fJ_v9SHkMdAKKMhn28pN64pRqCuqKgpwh8xANbqkdS3ukhnVkpZaMXZBHsS4pRSY0vI-uWCCMUoFm5GPy7DB6Icf377HYnH1wUYsFi75g0_HYhmmfY-xODPFKtjWD9dFGFIoLt8tiq8-bYpPO8dzBtOxt8mH4SG519k-4qPzOSefX728Wr4pV-9fv10uVqUT0KTSUougtQLJoO0s6rUScq1A6K5peQes5pZLQC4caOE6IWQLUnZNDVZbLficvDj17qf1DluHQxptb_aj39nxaIL15s-bwW_MdTiYGpTK7-SCp-eCMXyZMCaz89Fh39sBwxQNB1Ezkefj_0RBckG5aDT7D5RqQYXOkTmBE-rGEOOI3e3wQM2NYbM12bC5MWyoMtlwzjz5fevbxC-lGXh-AjD__cHjaKLzODhs_YgumTb4v9T_BL8AtfY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609505916</pqid></control><display><type>article</type><title>Cohesin’s ATPase Activity Couples Cohesin Loading onto DNA with Smc3 Acetylation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ladurner, Rene ; Bhaskara, Venugopal ; Huis in ’t Veld, Pim J. ; Davidson, Iain F. ; Kreidl, Emanuel ; Petzold, Georg ; Peters, Jan-Michael</creator><creatorcontrib>Ladurner, Rene ; Bhaskara, Venugopal ; Huis in ’t Veld, Pim J. ; Davidson, Iain F. ; Kreidl, Emanuel ; Petzold, Georg ; Peters, Jan-Michael</creatorcontrib><description>Cohesin mediates sister chromatid cohesion by topologically entrapping sister DNA molecules inside its ring structure. Cohesin is loaded onto DNA by the Scc2/NIPBL-Scc4/MAU2-loading complex in a manner that depends on the adenosine triphosphatase (ATPase) activity of cohesin’s Smc1 and Smc3 subunits. Subsequent cohesion establishment during DNA replication depends on Smc3 acetylation by Esco1 and Esco2 and on recruitment of sororin, which “locks” cohesin on DNA by inactivating the cohesin release factor Wapl.
Human cohesin ATPase mutants associate transiently with DNA in a manner that depends on the loading complex but cannot be stabilized on chromatin by depletion of Wapl. These mutants cannot be acetylated, fail to interact with sororin, and do not mediate cohesion. The absence of Smc3 acetylation in the ATPase mutants is not a consequence of their transient association with DNA but is directly caused by their inability to hydrolyze ATP because acetylation of wild-type cohesin also depends on ATP hydrolysis.
Our data indicate that cohesion establishment involves the following steps. First, cohesin transiently associates with DNA in a manner that depends on the loading complex. Subsequently, ATP hydrolysis by cohesin leads to entrapment of DNA and converts Smc3 into a state that can be acetylated. Finally, Smc3 acetylation leads to recruitment of sororin, inhibition of Wapl, and stabilization of cohesin on DNA. Our finding that cohesin’s ATPase activity is required for both cohesin loading and Smc3 acetylation raises the possibility that cohesion establishment is directly coupled to the reaction in which cohesin entraps DNA.
[Display omitted]
•Cohesin initially interacts with chromatin transiently via the loading complex•Cohesin’s ATPase activity is required for dynamic chromatin-cohesin interactions•Smc3 acetylation does not significantly alter cohesin’s ATPase activity•Cohesin’s ATPase activity is required for Smc3 acetylation
Ladurner et al. present evidence that the adenosine triphosphatase (ATPase) activity of the cohesin complex is required for cohesin acetylation, suggesting that sister-chromatid entrapment by cohesin is coupled to the establishment of cohesion.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2014.08.011</identifier><identifier>PMID: 25220052</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>acetylation ; Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; adenosinetriphosphatase ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Chondroitin Sulfate Proteoglycans - metabolism ; chromatids ; chromatin ; Chromatin - metabolism ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Cohesins ; cohesion ; DNA ; DNA replication ; DNA-Binding Proteins ; Gene Expression Regulation ; Humans ; Hydrolysis ; Intercellular Signaling Peptides and Proteins - genetics ; Intercellular Signaling Peptides and Proteins - metabolism ; Mutation ; Proteins - genetics ; Proteins - metabolism ; Sister Chromatid Exchange</subject><ispartof>Current biology, 2014-10, Vol.24 (19), p.2228-2237</ispartof><rights>2014 The Authors</rights><rights>Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2014 The Authors 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-a0ae19981621dfae9b856b8159f7d3f1243a361e35c195cf556d166f741a9a953</citedby><cites>FETCH-LOGICAL-c517t-a0ae19981621dfae9b856b8159f7d3f1243a361e35c195cf556d166f741a9a953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982214009890$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25220052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ladurner, Rene</creatorcontrib><creatorcontrib>Bhaskara, Venugopal</creatorcontrib><creatorcontrib>Huis in ’t Veld, Pim J.</creatorcontrib><creatorcontrib>Davidson, Iain F.</creatorcontrib><creatorcontrib>Kreidl, Emanuel</creatorcontrib><creatorcontrib>Petzold, Georg</creatorcontrib><creatorcontrib>Peters, Jan-Michael</creatorcontrib><title>Cohesin’s ATPase Activity Couples Cohesin Loading onto DNA with Smc3 Acetylation</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Cohesin mediates sister chromatid cohesion by topologically entrapping sister DNA molecules inside its ring structure. Cohesin is loaded onto DNA by the Scc2/NIPBL-Scc4/MAU2-loading complex in a manner that depends on the adenosine triphosphatase (ATPase) activity of cohesin’s Smc1 and Smc3 subunits. Subsequent cohesion establishment during DNA replication depends on Smc3 acetylation by Esco1 and Esco2 and on recruitment of sororin, which “locks” cohesin on DNA by inactivating the cohesin release factor Wapl.
Human cohesin ATPase mutants associate transiently with DNA in a manner that depends on the loading complex but cannot be stabilized on chromatin by depletion of Wapl. These mutants cannot be acetylated, fail to interact with sororin, and do not mediate cohesion. The absence of Smc3 acetylation in the ATPase mutants is not a consequence of their transient association with DNA but is directly caused by their inability to hydrolyze ATP because acetylation of wild-type cohesin also depends on ATP hydrolysis.
Our data indicate that cohesion establishment involves the following steps. First, cohesin transiently associates with DNA in a manner that depends on the loading complex. Subsequently, ATP hydrolysis by cohesin leads to entrapment of DNA and converts Smc3 into a state that can be acetylated. Finally, Smc3 acetylation leads to recruitment of sororin, inhibition of Wapl, and stabilization of cohesin on DNA. Our finding that cohesin’s ATPase activity is required for both cohesin loading and Smc3 acetylation raises the possibility that cohesion establishment is directly coupled to the reaction in which cohesin entraps DNA.
[Display omitted]
•Cohesin initially interacts with chromatin transiently via the loading complex•Cohesin’s ATPase activity is required for dynamic chromatin-cohesin interactions•Smc3 acetylation does not significantly alter cohesin’s ATPase activity•Cohesin’s ATPase activity is required for Smc3 acetylation
Ladurner et al. present evidence that the adenosine triphosphatase (ATPase) activity of the cohesin complex is required for cohesin acetylation, suggesting that sister-chromatid entrapment by cohesin is coupled to the establishment of cohesion.</description><subject>acetylation</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>adenosinetriphosphatase</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chondroitin Sulfate Proteoglycans - metabolism</subject><subject>chromatids</subject><subject>chromatin</subject><subject>Chromatin - metabolism</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Cohesins</subject><subject>cohesion</subject><subject>DNA</subject><subject>DNA replication</subject><subject>DNA-Binding Proteins</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Intercellular Signaling Peptides and Proteins - genetics</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Mutation</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Sister Chromatid Exchange</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2O0zAURi0EYkrhAdigLNkk-NqxYwsJqerwJ1WAYFhbrnMzdZXGJXaKuuM1eD2eBI9aRrABVl74fJ_v9SHkMdAKKMhn28pN64pRqCuqKgpwh8xANbqkdS3ukhnVkpZaMXZBHsS4pRSY0vI-uWCCMUoFm5GPy7DB6Icf377HYnH1wUYsFi75g0_HYhmmfY-xODPFKtjWD9dFGFIoLt8tiq8-bYpPO8dzBtOxt8mH4SG519k-4qPzOSefX728Wr4pV-9fv10uVqUT0KTSUougtQLJoO0s6rUScq1A6K5peQes5pZLQC4caOE6IWQLUnZNDVZbLficvDj17qf1DluHQxptb_aj39nxaIL15s-bwW_MdTiYGpTK7-SCp-eCMXyZMCaz89Fh39sBwxQNB1Ezkefj_0RBckG5aDT7D5RqQYXOkTmBE-rGEOOI3e3wQM2NYbM12bC5MWyoMtlwzjz5fevbxC-lGXh-AjD__cHjaKLzODhs_YgumTb4v9T_BL8AtfY</recordid><startdate>20141006</startdate><enddate>20141006</enddate><creator>Ladurner, Rene</creator><creator>Bhaskara, Venugopal</creator><creator>Huis in ’t Veld, Pim J.</creator><creator>Davidson, Iain F.</creator><creator>Kreidl, Emanuel</creator><creator>Petzold, Georg</creator><creator>Peters, Jan-Michael</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20141006</creationdate><title>Cohesin’s ATPase Activity Couples Cohesin Loading onto DNA with Smc3 Acetylation</title><author>Ladurner, Rene ; Bhaskara, Venugopal ; Huis in ’t Veld, Pim J. ; Davidson, Iain F. ; Kreidl, Emanuel ; Petzold, Georg ; Peters, Jan-Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-a0ae19981621dfae9b856b8159f7d3f1243a361e35c195cf556d166f741a9a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>acetylation</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>adenosinetriphosphatase</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chondroitin Sulfate Proteoglycans - metabolism</topic><topic>chromatids</topic><topic>chromatin</topic><topic>Chromatin - metabolism</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Cohesins</topic><topic>cohesion</topic><topic>DNA</topic><topic>DNA replication</topic><topic>DNA-Binding Proteins</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Intercellular Signaling Peptides and Proteins - genetics</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Mutation</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Sister Chromatid Exchange</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ladurner, Rene</creatorcontrib><creatorcontrib>Bhaskara, Venugopal</creatorcontrib><creatorcontrib>Huis in ’t Veld, Pim J.</creatorcontrib><creatorcontrib>Davidson, Iain F.</creatorcontrib><creatorcontrib>Kreidl, Emanuel</creatorcontrib><creatorcontrib>Petzold, Georg</creatorcontrib><creatorcontrib>Peters, Jan-Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ladurner, Rene</au><au>Bhaskara, Venugopal</au><au>Huis in ’t Veld, Pim J.</au><au>Davidson, Iain F.</au><au>Kreidl, Emanuel</au><au>Petzold, Georg</au><au>Peters, Jan-Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cohesin’s ATPase Activity Couples Cohesin Loading onto DNA with Smc3 Acetylation</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2014-10-06</date><risdate>2014</risdate><volume>24</volume><issue>19</issue><spage>2228</spage><epage>2237</epage><pages>2228-2237</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Cohesin mediates sister chromatid cohesion by topologically entrapping sister DNA molecules inside its ring structure. Cohesin is loaded onto DNA by the Scc2/NIPBL-Scc4/MAU2-loading complex in a manner that depends on the adenosine triphosphatase (ATPase) activity of cohesin’s Smc1 and Smc3 subunits. Subsequent cohesion establishment during DNA replication depends on Smc3 acetylation by Esco1 and Esco2 and on recruitment of sororin, which “locks” cohesin on DNA by inactivating the cohesin release factor Wapl.
Human cohesin ATPase mutants associate transiently with DNA in a manner that depends on the loading complex but cannot be stabilized on chromatin by depletion of Wapl. These mutants cannot be acetylated, fail to interact with sororin, and do not mediate cohesion. The absence of Smc3 acetylation in the ATPase mutants is not a consequence of their transient association with DNA but is directly caused by their inability to hydrolyze ATP because acetylation of wild-type cohesin also depends on ATP hydrolysis.
Our data indicate that cohesion establishment involves the following steps. First, cohesin transiently associates with DNA in a manner that depends on the loading complex. Subsequently, ATP hydrolysis by cohesin leads to entrapment of DNA and converts Smc3 into a state that can be acetylated. Finally, Smc3 acetylation leads to recruitment of sororin, inhibition of Wapl, and stabilization of cohesin on DNA. Our finding that cohesin’s ATPase activity is required for both cohesin loading and Smc3 acetylation raises the possibility that cohesion establishment is directly coupled to the reaction in which cohesin entraps DNA.
[Display omitted]
•Cohesin initially interacts with chromatin transiently via the loading complex•Cohesin’s ATPase activity is required for dynamic chromatin-cohesin interactions•Smc3 acetylation does not significantly alter cohesin’s ATPase activity•Cohesin’s ATPase activity is required for Smc3 acetylation
Ladurner et al. present evidence that the adenosine triphosphatase (ATPase) activity of the cohesin complex is required for cohesin acetylation, suggesting that sister-chromatid entrapment by cohesin is coupled to the establishment of cohesion.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>25220052</pmid><doi>10.1016/j.cub.2014.08.011</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2014-10, Vol.24 (19), p.2228-2237 |
issn | 0960-9822 1879-0445 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4188815 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | acetylation Adenosine Triphosphatases - genetics Adenosine Triphosphatases - metabolism adenosinetriphosphatase Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Chondroitin Sulfate Proteoglycans - metabolism chromatids chromatin Chromatin - metabolism Chromosomal Proteins, Non-Histone - genetics Chromosomal Proteins, Non-Histone - metabolism Cohesins cohesion DNA DNA replication DNA-Binding Proteins Gene Expression Regulation Humans Hydrolysis Intercellular Signaling Peptides and Proteins - genetics Intercellular Signaling Peptides and Proteins - metabolism Mutation Proteins - genetics Proteins - metabolism Sister Chromatid Exchange |
title | Cohesin’s ATPase Activity Couples Cohesin Loading onto DNA with Smc3 Acetylation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cohesin%E2%80%99s%20ATPase%20Activity%20Couples%20Cohesin%20Loading%20onto%20DNA%20with%20Smc3%20Acetylation&rft.jtitle=Current%20biology&rft.au=Ladurner,%20Rene&rft.date=2014-10-06&rft.volume=24&rft.issue=19&rft.spage=2228&rft.epage=2237&rft.pages=2228-2237&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2014.08.011&rft_dat=%3Cproquest_pubme%3E1635035792%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609505916&rft_id=info:pmid/25220052&rft_els_id=S0960982214009890&rfr_iscdi=true |