Modeling of age‐dependent amyloid accumulation and γ‐secretase inhibition of soluble and insoluble Aβ in a transgenic mouse model of amyloid deposition

According to the “amyloid hypothesis,” accumulation of amyloid beta (Aβ) peptides in the brain is linked to the development of Alzheimer's disease. The aims of this investigation were to develop a model for the age‐dependent amyloid accumulation and to quantify the age‐ and treatment‐duration‐d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacology research & perspectives 2013-12, Vol.1 (2), p.e00012-n/a
Hauptverfasser: Parkinson, Joanna, Ploeger, Bart, Appelkvist, Paulina, Bogstedt, Anna, Dillner Bergstedt, Karin, Eketjäll, Susanna, Visser, Sandra A. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e00012
container_title Pharmacology research & perspectives
container_volume 1
creator Parkinson, Joanna
Ploeger, Bart
Appelkvist, Paulina
Bogstedt, Anna
Dillner Bergstedt, Karin
Eketjäll, Susanna
Visser, Sandra A. G.
description According to the “amyloid hypothesis,” accumulation of amyloid beta (Aβ) peptides in the brain is linked to the development of Alzheimer's disease. The aims of this investigation were to develop a model for the age‐dependent amyloid accumulation and to quantify the age‐ and treatment‐duration‐dependent efficacy of the γ‐secretase inhibitor MRK‐560 in the Tg2576 transgenic mouse model of amyloid deposition. Soluble and insoluble Aβ40 and Aβ42 brain concentrations were compiled from multiple naïve, vehicle, and MRK‐560‐treated animals. The age of Tg2576 mice in the studies ranged between 3.5 and 26 months. Single doses of MRK‐560 inhibited soluble Aβ40 levels in animals up to 9 months old. In contrast, MRK‐560 did not cause significant acute effects on soluble Aβ40 levels in animals older than 13 months. Absolute levels of Aβ variants increased exponentially over age and reached a plateau at ~20 months. In the final model, it was assumed that MRK‐560 inhibited the Aβ production rate with an Aβ level‐dependent IC50.The age‐dependent increase in Aβ levels was best described by a logistic model that stimulated the production rate of soluble Aβ. The increase in insoluble Aβ was defined as a function of soluble Aβ by using a scaling factor and a different turnover rate. The turnover half‐life for insoluble Aβ was estimated at 30 days, explaining that at least a 4‐week treatment in young animals was required to demonstrate a reduction in insoluble Aβ. Taken together, the derived knowledge could be exploited for an improved design of new experiments in Tg2576 mice. e00012
doi_str_mv 10.1002/prp2.12
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4186430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1637562909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3762-bc7dc96401ed545a7bf28b11bd05ed1a94732accac03c779bf9d3b4e1056ca323</originalsourceid><addsrcrecordid>eNp1kV9qFTEUxgdRbKnFHUjABwW5NX8mk86LUIpaoaVF9Dnkz5nblEwyJjPKfXMJbsBN6D66iK7EzL23pQo-5RzOL9_5Pk5VPSX4gGBMXw9poAeEPqh2KeZ0QQQWD-_VO9V-zlcYY0JqTBh9XO1QzjHnjditfp5FC96FJYodUku4-f7DwgDBQhiR6lc-OouUMVM_eTW6GJAKFl3_LlwGk2BUGZALl0679bSo5Ogn7WENunDbHV3_Kh1SaEwq5CUEZ1Afp_K7nx2s12_XFQMxr-WeVI865TPsb9-96vO7t5-OTxan5-8_HB-dLgwTDV1oI6xpm5IOLK-5Erqjh5oQbTEHS1RbC0ZLCGUwM0K0umst0zUQzBujGGV71ZuN7jDpHqwp4ZPyckiuV2klo3Ly70lwl3IZv8qaHDY1w0Xg5VYgxS8T5FH2LhvwXgUoISVpmOANbXFb0Of_oFdxSqHEk5S2LaGFnR292FAmxZwTdHdmCJbz1eV8dUlm8tl973fc7Y0L8GoDfHMeVv_TkRcfL2iR-wNCobzs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299121632</pqid></control><display><type>article</type><title>Modeling of age‐dependent amyloid accumulation and γ‐secretase inhibition of soluble and insoluble Aβ in a transgenic mouse model of amyloid deposition</title><source>Wiley Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><creator>Parkinson, Joanna ; Ploeger, Bart ; Appelkvist, Paulina ; Bogstedt, Anna ; Dillner Bergstedt, Karin ; Eketjäll, Susanna ; Visser, Sandra A. G.</creator><creatorcontrib>Parkinson, Joanna ; Ploeger, Bart ; Appelkvist, Paulina ; Bogstedt, Anna ; Dillner Bergstedt, Karin ; Eketjäll, Susanna ; Visser, Sandra A. G.</creatorcontrib><description>According to the “amyloid hypothesis,” accumulation of amyloid beta (Aβ) peptides in the brain is linked to the development of Alzheimer's disease. The aims of this investigation were to develop a model for the age‐dependent amyloid accumulation and to quantify the age‐ and treatment‐duration‐dependent efficacy of the γ‐secretase inhibitor MRK‐560 in the Tg2576 transgenic mouse model of amyloid deposition. Soluble and insoluble Aβ40 and Aβ42 brain concentrations were compiled from multiple naïve, vehicle, and MRK‐560‐treated animals. The age of Tg2576 mice in the studies ranged between 3.5 and 26 months. Single doses of MRK‐560 inhibited soluble Aβ40 levels in animals up to 9 months old. In contrast, MRK‐560 did not cause significant acute effects on soluble Aβ40 levels in animals older than 13 months. Absolute levels of Aβ variants increased exponentially over age and reached a plateau at ~20 months. In the final model, it was assumed that MRK‐560 inhibited the Aβ production rate with an Aβ level‐dependent IC50.The age‐dependent increase in Aβ levels was best described by a logistic model that stimulated the production rate of soluble Aβ. The increase in insoluble Aβ was defined as a function of soluble Aβ by using a scaling factor and a different turnover rate. The turnover half‐life for insoluble Aβ was estimated at 30 days, explaining that at least a 4‐week treatment in young animals was required to demonstrate a reduction in insoluble Aβ. Taken together, the derived knowledge could be exploited for an improved design of new experiments in Tg2576 mice. e00012</description><identifier>ISSN: 2052-1707</identifier><identifier>EISSN: 2052-1707</identifier><identifier>DOI: 10.1002/prp2.12</identifier><identifier>PMID: 25505567</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Age ; Alzheimer's disease ; Cellulose ; disease progression ; Drug dosages ; Experiments ; Hypotheses ; Laboratories ; Mathematical models ; modeling ; Mutation ; Original ; pharmacokinetic‐pharmacodynamic ; Pharmacology ; Studies ; Tg2576 mouse ; Transgenic animals ; γ‐secretase inhibitor</subject><ispartof>Pharmacology research &amp; perspectives, 2013-12, Vol.1 (2), p.e00012-n/a</ispartof><rights>2013 The Authors. published by John Wiley &amp; Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.</rights><rights>2013. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 The Authors. published by John Wiley &amp; Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3762-bc7dc96401ed545a7bf28b11bd05ed1a94732accac03c779bf9d3b4e1056ca323</citedby><cites>FETCH-LOGICAL-c3762-bc7dc96401ed545a7bf28b11bd05ed1a94732accac03c779bf9d3b4e1056ca323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186430/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186430/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25505567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parkinson, Joanna</creatorcontrib><creatorcontrib>Ploeger, Bart</creatorcontrib><creatorcontrib>Appelkvist, Paulina</creatorcontrib><creatorcontrib>Bogstedt, Anna</creatorcontrib><creatorcontrib>Dillner Bergstedt, Karin</creatorcontrib><creatorcontrib>Eketjäll, Susanna</creatorcontrib><creatorcontrib>Visser, Sandra A. G.</creatorcontrib><title>Modeling of age‐dependent amyloid accumulation and γ‐secretase inhibition of soluble and insoluble Aβ in a transgenic mouse model of amyloid deposition</title><title>Pharmacology research &amp; perspectives</title><addtitle>Pharmacol Res Perspect</addtitle><description>According to the “amyloid hypothesis,” accumulation of amyloid beta (Aβ) peptides in the brain is linked to the development of Alzheimer's disease. The aims of this investigation were to develop a model for the age‐dependent amyloid accumulation and to quantify the age‐ and treatment‐duration‐dependent efficacy of the γ‐secretase inhibitor MRK‐560 in the Tg2576 transgenic mouse model of amyloid deposition. Soluble and insoluble Aβ40 and Aβ42 brain concentrations were compiled from multiple naïve, vehicle, and MRK‐560‐treated animals. The age of Tg2576 mice in the studies ranged between 3.5 and 26 months. Single doses of MRK‐560 inhibited soluble Aβ40 levels in animals up to 9 months old. In contrast, MRK‐560 did not cause significant acute effects on soluble Aβ40 levels in animals older than 13 months. Absolute levels of Aβ variants increased exponentially over age and reached a plateau at ~20 months. In the final model, it was assumed that MRK‐560 inhibited the Aβ production rate with an Aβ level‐dependent IC50.The age‐dependent increase in Aβ levels was best described by a logistic model that stimulated the production rate of soluble Aβ. The increase in insoluble Aβ was defined as a function of soluble Aβ by using a scaling factor and a different turnover rate. The turnover half‐life for insoluble Aβ was estimated at 30 days, explaining that at least a 4‐week treatment in young animals was required to demonstrate a reduction in insoluble Aβ. Taken together, the derived knowledge could be exploited for an improved design of new experiments in Tg2576 mice. e00012</description><subject>Age</subject><subject>Alzheimer's disease</subject><subject>Cellulose</subject><subject>disease progression</subject><subject>Drug dosages</subject><subject>Experiments</subject><subject>Hypotheses</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Mutation</subject><subject>Original</subject><subject>pharmacokinetic‐pharmacodynamic</subject><subject>Pharmacology</subject><subject>Studies</subject><subject>Tg2576 mouse</subject><subject>Transgenic animals</subject><subject>γ‐secretase inhibitor</subject><issn>2052-1707</issn><issn>2052-1707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kV9qFTEUxgdRbKnFHUjABwW5NX8mk86LUIpaoaVF9Dnkz5nblEwyJjPKfXMJbsBN6D66iK7EzL23pQo-5RzOL9_5Pk5VPSX4gGBMXw9poAeEPqh2KeZ0QQQWD-_VO9V-zlcYY0JqTBh9XO1QzjHnjditfp5FC96FJYodUku4-f7DwgDBQhiR6lc-OouUMVM_eTW6GJAKFl3_LlwGk2BUGZALl0679bSo5Ogn7WENunDbHV3_Kh1SaEwq5CUEZ1Afp_K7nx2s12_XFQMxr-WeVI865TPsb9-96vO7t5-OTxan5-8_HB-dLgwTDV1oI6xpm5IOLK-5Erqjh5oQbTEHS1RbC0ZLCGUwM0K0umst0zUQzBujGGV71ZuN7jDpHqwp4ZPyckiuV2klo3Ly70lwl3IZv8qaHDY1w0Xg5VYgxS8T5FH2LhvwXgUoISVpmOANbXFb0Of_oFdxSqHEk5S2LaGFnR292FAmxZwTdHdmCJbz1eV8dUlm8tl973fc7Y0L8GoDfHMeVv_TkRcfL2iR-wNCobzs</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Parkinson, Joanna</creator><creator>Ploeger, Bart</creator><creator>Appelkvist, Paulina</creator><creator>Bogstedt, Anna</creator><creator>Dillner Bergstedt, Karin</creator><creator>Eketjäll, Susanna</creator><creator>Visser, Sandra A. G.</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201312</creationdate><title>Modeling of age‐dependent amyloid accumulation and γ‐secretase inhibition of soluble and insoluble Aβ in a transgenic mouse model of amyloid deposition</title><author>Parkinson, Joanna ; Ploeger, Bart ; Appelkvist, Paulina ; Bogstedt, Anna ; Dillner Bergstedt, Karin ; Eketjäll, Susanna ; Visser, Sandra A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3762-bc7dc96401ed545a7bf28b11bd05ed1a94732accac03c779bf9d3b4e1056ca323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Age</topic><topic>Alzheimer's disease</topic><topic>Cellulose</topic><topic>disease progression</topic><topic>Drug dosages</topic><topic>Experiments</topic><topic>Hypotheses</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Mutation</topic><topic>Original</topic><topic>pharmacokinetic‐pharmacodynamic</topic><topic>Pharmacology</topic><topic>Studies</topic><topic>Tg2576 mouse</topic><topic>Transgenic animals</topic><topic>γ‐secretase inhibitor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parkinson, Joanna</creatorcontrib><creatorcontrib>Ploeger, Bart</creatorcontrib><creatorcontrib>Appelkvist, Paulina</creatorcontrib><creatorcontrib>Bogstedt, Anna</creatorcontrib><creatorcontrib>Dillner Bergstedt, Karin</creatorcontrib><creatorcontrib>Eketjäll, Susanna</creatorcontrib><creatorcontrib>Visser, Sandra A. G.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pharmacology research &amp; perspectives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parkinson, Joanna</au><au>Ploeger, Bart</au><au>Appelkvist, Paulina</au><au>Bogstedt, Anna</au><au>Dillner Bergstedt, Karin</au><au>Eketjäll, Susanna</au><au>Visser, Sandra A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of age‐dependent amyloid accumulation and γ‐secretase inhibition of soluble and insoluble Aβ in a transgenic mouse model of amyloid deposition</atitle><jtitle>Pharmacology research &amp; perspectives</jtitle><addtitle>Pharmacol Res Perspect</addtitle><date>2013-12</date><risdate>2013</risdate><volume>1</volume><issue>2</issue><spage>e00012</spage><epage>n/a</epage><pages>e00012-n/a</pages><issn>2052-1707</issn><eissn>2052-1707</eissn><abstract>According to the “amyloid hypothesis,” accumulation of amyloid beta (Aβ) peptides in the brain is linked to the development of Alzheimer's disease. The aims of this investigation were to develop a model for the age‐dependent amyloid accumulation and to quantify the age‐ and treatment‐duration‐dependent efficacy of the γ‐secretase inhibitor MRK‐560 in the Tg2576 transgenic mouse model of amyloid deposition. Soluble and insoluble Aβ40 and Aβ42 brain concentrations were compiled from multiple naïve, vehicle, and MRK‐560‐treated animals. The age of Tg2576 mice in the studies ranged between 3.5 and 26 months. Single doses of MRK‐560 inhibited soluble Aβ40 levels in animals up to 9 months old. In contrast, MRK‐560 did not cause significant acute effects on soluble Aβ40 levels in animals older than 13 months. Absolute levels of Aβ variants increased exponentially over age and reached a plateau at ~20 months. In the final model, it was assumed that MRK‐560 inhibited the Aβ production rate with an Aβ level‐dependent IC50.The age‐dependent increase in Aβ levels was best described by a logistic model that stimulated the production rate of soluble Aβ. The increase in insoluble Aβ was defined as a function of soluble Aβ by using a scaling factor and a different turnover rate. The turnover half‐life for insoluble Aβ was estimated at 30 days, explaining that at least a 4‐week treatment in young animals was required to demonstrate a reduction in insoluble Aβ. Taken together, the derived knowledge could be exploited for an improved design of new experiments in Tg2576 mice. e00012</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>25505567</pmid><doi>10.1002/prp2.12</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2052-1707
ispartof Pharmacology research & perspectives, 2013-12, Vol.1 (2), p.e00012-n/a
issn 2052-1707
2052-1707
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4186430
source Wiley Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; PubMed Central
subjects Age
Alzheimer's disease
Cellulose
disease progression
Drug dosages
Experiments
Hypotheses
Laboratories
Mathematical models
modeling
Mutation
Original
pharmacokinetic‐pharmacodynamic
Pharmacology
Studies
Tg2576 mouse
Transgenic animals
γ‐secretase inhibitor
title Modeling of age‐dependent amyloid accumulation and γ‐secretase inhibition of soluble and insoluble Aβ in a transgenic mouse model of amyloid deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20age%E2%80%90dependent%20amyloid%20accumulation%20and%20%CE%B3%E2%80%90secretase%20inhibition%20of%20soluble%20and%20insoluble%20A%CE%B2%20in%20a%20transgenic%20mouse%20model%20of%20amyloid%20deposition&rft.jtitle=Pharmacology%20research%20&%20perspectives&rft.au=Parkinson,%20Joanna&rft.date=2013-12&rft.volume=1&rft.issue=2&rft.spage=e00012&rft.epage=n/a&rft.pages=e00012-n/a&rft.issn=2052-1707&rft.eissn=2052-1707&rft_id=info:doi/10.1002/prp2.12&rft_dat=%3Cproquest_pubme%3E1637562909%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299121632&rft_id=info:pmid/25505567&rfr_iscdi=true