Nutrients drive transcriptional changes that maintain metabolic homeostasis but alter genome architecture in Microcystis
The cyanobacterium Microcystis aeruginosa is a globally distributed bloom-forming organism that degrades freshwater systems around the world. Factors that drive its dispersion, diversification and success remain, however, poorly understood. To develop insight into cellular-level responses to nutrien...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2014-10, Vol.8 (10), p.2080-2092 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2092 |
---|---|
container_issue | 10 |
container_start_page | 2080 |
container_title | The ISME Journal |
container_volume | 8 |
creator | Steffen, Morgan M Dearth, Stephen P Dill, Brian D Li, Zhou Larsen, Kristen M Campagna, Shawn R Wilhelm, Steven W |
description | The cyanobacterium
Microcystis aeruginosa
is a globally distributed bloom-forming organism that degrades freshwater systems around the world. Factors that drive its dispersion, diversification and success remain, however, poorly understood. To develop insight into cellular-level responses to nutrient drivers of eutrophication, RNA sequencing was coupled to a comprehensive metabolomics survey of
M. aeruginosa
sp. NIES 843 grown in various nutrient-reduced conditions. Transcriptomes were generated for cultures grown in nutrient-replete (with nitrate as the nitrogen (N) source), nitrogen-reduced (with nitrate, urea or ammonium acting as the N sources) and phosphate-reduced conditions. Extensive expression differences (up to 696 genes for urea-grown cells) relative to the control treatment were observed, demonstrating that the chemical variant of nitrogen available to cells affected transcriptional activity. Of particular note, a high number of transposase genes (up to 81) were significantly and reproducibly up-regulated relative to the control when grown on urea. Conversely, phosphorus (P) reduction resulted in a significant cessation in transcription of transposase genes, indicating that variation in nutrient chemistry may influence transcription of transposases and may impact the highly mosaic genomic architecture of
M. aeruginosa.
Corresponding metabolomes showed comparably few differences between treatments, suggesting broad changes to gene transcription are required to maintain metabolic homeostasis under nutrient reduction. The combined observations provide novel and extensive insight into the complex cellular interactions that take place in this important bloom-forming organism during variable nutrient conditions and highlight a potential unknown molecular mechanism that may drive
Microcystis
blooms and evolution. |
doi_str_mv | 10.1038/ismej.2014.78 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4184021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3439614801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-356732f70a6f823ba50ae55f51ca9f9e05d03c099e0c43848d9245592b1785973</originalsourceid><addsrcrecordid>eNqFkc1rFDEYxoMotq4evUrAi5dZ853MRZDiF1R7qeeQyb6zk2VmsiaZ0v73pm5dWil4CHnJ-8vzfjwIvaZkTQk370OeYLdmhIq1Nk_QKdWSNppr8vQYK3aCXuS8I0RqpfRzdMKEkUYbfoqufywlBZhLxpsUrgCX5ObsU9iXEGc3Yj-4eQsZl8EVPLkwl3rwBMV1cQweD3GCmIvLIeNuKdiNBRLewlzfsUt-CAV8WRLg-u178Cn6m1xCfome9W7M8OruXqGfnz9dnn1tzi--fDv7eN54KXVpuFSas14Tp3rDeOckcSBlL6l3bd8CkRvCPWlr5AU3wmxaJqRsWUe1ka3mK_ThoLtfugk2vo6a3Gj3KUwu3djogn2YmcNgt_HKCmoEYbQKvLsTSPHXArnYKWQP4-hmiEu2VHFJapuM_x-VSihilBAVffsPuotLqgs_UFS0XMhKNQeqri3nBP2xb0rsrf32j_321n5b_VyhN_eHPdJ__a7A-gDkmqq-pntlH1X8DVdUvhk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564149345</pqid></control><display><type>article</type><title>Nutrients drive transcriptional changes that maintain metabolic homeostasis but alter genome architecture in Microcystis</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Steffen, Morgan M ; Dearth, Stephen P ; Dill, Brian D ; Li, Zhou ; Larsen, Kristen M ; Campagna, Shawn R ; Wilhelm, Steven W</creator><creatorcontrib>Steffen, Morgan M ; Dearth, Stephen P ; Dill, Brian D ; Li, Zhou ; Larsen, Kristen M ; Campagna, Shawn R ; Wilhelm, Steven W</creatorcontrib><description>The cyanobacterium
Microcystis aeruginosa
is a globally distributed bloom-forming organism that degrades freshwater systems around the world. Factors that drive its dispersion, diversification and success remain, however, poorly understood. To develop insight into cellular-level responses to nutrient drivers of eutrophication, RNA sequencing was coupled to a comprehensive metabolomics survey of
M. aeruginosa
sp. NIES 843 grown in various nutrient-reduced conditions. Transcriptomes were generated for cultures grown in nutrient-replete (with nitrate as the nitrogen (N) source), nitrogen-reduced (with nitrate, urea or ammonium acting as the N sources) and phosphate-reduced conditions. Extensive expression differences (up to 696 genes for urea-grown cells) relative to the control treatment were observed, demonstrating that the chemical variant of nitrogen available to cells affected transcriptional activity. Of particular note, a high number of transposase genes (up to 81) were significantly and reproducibly up-regulated relative to the control when grown on urea. Conversely, phosphorus (P) reduction resulted in a significant cessation in transcription of transposase genes, indicating that variation in nutrient chemistry may influence transcription of transposases and may impact the highly mosaic genomic architecture of
M. aeruginosa.
Corresponding metabolomes showed comparably few differences between treatments, suggesting broad changes to gene transcription are required to maintain metabolic homeostasis under nutrient reduction. The combined observations provide novel and extensive insight into the complex cellular interactions that take place in this important bloom-forming organism during variable nutrient conditions and highlight a potential unknown molecular mechanism that may drive
Microcystis
blooms and evolution.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2014.78</identifier><identifier>PMID: 24858783</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/2459 ; 631/208/212/2019 ; 631/326/2565/855 ; Ammonium ; Biomedical and Life Sciences ; Cyanobacteria ; Ecology ; Eutrophication ; Evolutionary Biology ; Freshwater organisms ; Genome, Bacterial ; Homeostasis ; Life Sciences ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microcystis ; Microcystis - genetics ; Microcystis - metabolism ; Microcystis aeruginosa ; Nitrates - metabolism ; Nitrogen ; Nitrogen - metabolism ; Nutrients ; Original ; original-article ; Phosphorus - metabolism ; Sequence Analysis, RNA ; Transcriptome ; Urea</subject><ispartof>The ISME Journal, 2014-10, Vol.8 (10), p.2080-2092</ispartof><rights>International Society for Microbial Ecology 2014</rights><rights>Copyright Nature Publishing Group Oct 2014</rights><rights>Copyright © 2014 International Society for Microbial Ecology 2014 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-356732f70a6f823ba50ae55f51ca9f9e05d03c099e0c43848d9245592b1785973</citedby><cites>FETCH-LOGICAL-c557t-356732f70a6f823ba50ae55f51ca9f9e05d03c099e0c43848d9245592b1785973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184021/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184021/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24858783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steffen, Morgan M</creatorcontrib><creatorcontrib>Dearth, Stephen P</creatorcontrib><creatorcontrib>Dill, Brian D</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><creatorcontrib>Larsen, Kristen M</creatorcontrib><creatorcontrib>Campagna, Shawn R</creatorcontrib><creatorcontrib>Wilhelm, Steven W</creatorcontrib><title>Nutrients drive transcriptional changes that maintain metabolic homeostasis but alter genome architecture in Microcystis</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>The cyanobacterium
Microcystis aeruginosa
is a globally distributed bloom-forming organism that degrades freshwater systems around the world. Factors that drive its dispersion, diversification and success remain, however, poorly understood. To develop insight into cellular-level responses to nutrient drivers of eutrophication, RNA sequencing was coupled to a comprehensive metabolomics survey of
M. aeruginosa
sp. NIES 843 grown in various nutrient-reduced conditions. Transcriptomes were generated for cultures grown in nutrient-replete (with nitrate as the nitrogen (N) source), nitrogen-reduced (with nitrate, urea or ammonium acting as the N sources) and phosphate-reduced conditions. Extensive expression differences (up to 696 genes for urea-grown cells) relative to the control treatment were observed, demonstrating that the chemical variant of nitrogen available to cells affected transcriptional activity. Of particular note, a high number of transposase genes (up to 81) were significantly and reproducibly up-regulated relative to the control when grown on urea. Conversely, phosphorus (P) reduction resulted in a significant cessation in transcription of transposase genes, indicating that variation in nutrient chemistry may influence transcription of transposases and may impact the highly mosaic genomic architecture of
M. aeruginosa.
Corresponding metabolomes showed comparably few differences between treatments, suggesting broad changes to gene transcription are required to maintain metabolic homeostasis under nutrient reduction. The combined observations provide novel and extensive insight into the complex cellular interactions that take place in this important bloom-forming organism during variable nutrient conditions and highlight a potential unknown molecular mechanism that may drive
Microcystis
blooms and evolution.</description><subject>631/158/2459</subject><subject>631/208/212/2019</subject><subject>631/326/2565/855</subject><subject>Ammonium</subject><subject>Biomedical and Life Sciences</subject><subject>Cyanobacteria</subject><subject>Ecology</subject><subject>Eutrophication</subject><subject>Evolutionary Biology</subject><subject>Freshwater organisms</subject><subject>Genome, Bacterial</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microcystis</subject><subject>Microcystis - genetics</subject><subject>Microcystis - metabolism</subject><subject>Microcystis aeruginosa</subject><subject>Nitrates - metabolism</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>Nutrients</subject><subject>Original</subject><subject>original-article</subject><subject>Phosphorus - metabolism</subject><subject>Sequence Analysis, RNA</subject><subject>Transcriptome</subject><subject>Urea</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1rFDEYxoMotq4evUrAi5dZ853MRZDiF1R7qeeQyb6zk2VmsiaZ0v73pm5dWil4CHnJ-8vzfjwIvaZkTQk370OeYLdmhIq1Nk_QKdWSNppr8vQYK3aCXuS8I0RqpfRzdMKEkUYbfoqufywlBZhLxpsUrgCX5ObsU9iXEGc3Yj-4eQsZl8EVPLkwl3rwBMV1cQweD3GCmIvLIeNuKdiNBRLewlzfsUt-CAV8WRLg-u178Cn6m1xCfome9W7M8OruXqGfnz9dnn1tzi--fDv7eN54KXVpuFSas14Tp3rDeOckcSBlL6l3bd8CkRvCPWlr5AU3wmxaJqRsWUe1ka3mK_ThoLtfugk2vo6a3Gj3KUwu3djogn2YmcNgt_HKCmoEYbQKvLsTSPHXArnYKWQP4-hmiEu2VHFJapuM_x-VSihilBAVffsPuotLqgs_UFS0XMhKNQeqri3nBP2xb0rsrf32j_321n5b_VyhN_eHPdJ__a7A-gDkmqq-pntlH1X8DVdUvhk</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Steffen, Morgan M</creator><creator>Dearth, Stephen P</creator><creator>Dill, Brian D</creator><creator>Li, Zhou</creator><creator>Larsen, Kristen M</creator><creator>Campagna, Shawn R</creator><creator>Wilhelm, Steven W</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141001</creationdate><title>Nutrients drive transcriptional changes that maintain metabolic homeostasis but alter genome architecture in Microcystis</title><author>Steffen, Morgan M ; Dearth, Stephen P ; Dill, Brian D ; Li, Zhou ; Larsen, Kristen M ; Campagna, Shawn R ; Wilhelm, Steven W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-356732f70a6f823ba50ae55f51ca9f9e05d03c099e0c43848d9245592b1785973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/158/2459</topic><topic>631/208/212/2019</topic><topic>631/326/2565/855</topic><topic>Ammonium</topic><topic>Biomedical and Life Sciences</topic><topic>Cyanobacteria</topic><topic>Ecology</topic><topic>Eutrophication</topic><topic>Evolutionary Biology</topic><topic>Freshwater organisms</topic><topic>Genome, Bacterial</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microcystis</topic><topic>Microcystis - genetics</topic><topic>Microcystis - metabolism</topic><topic>Microcystis aeruginosa</topic><topic>Nitrates - metabolism</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>Nutrients</topic><topic>Original</topic><topic>original-article</topic><topic>Phosphorus - metabolism</topic><topic>Sequence Analysis, RNA</topic><topic>Transcriptome</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steffen, Morgan M</creatorcontrib><creatorcontrib>Dearth, Stephen P</creatorcontrib><creatorcontrib>Dill, Brian D</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><creatorcontrib>Larsen, Kristen M</creatorcontrib><creatorcontrib>Campagna, Shawn R</creatorcontrib><creatorcontrib>Wilhelm, Steven W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steffen, Morgan M</au><au>Dearth, Stephen P</au><au>Dill, Brian D</au><au>Li, Zhou</au><au>Larsen, Kristen M</au><au>Campagna, Shawn R</au><au>Wilhelm, Steven W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nutrients drive transcriptional changes that maintain metabolic homeostasis but alter genome architecture in Microcystis</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>8</volume><issue>10</issue><spage>2080</spage><epage>2092</epage><pages>2080-2092</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>The cyanobacterium
Microcystis aeruginosa
is a globally distributed bloom-forming organism that degrades freshwater systems around the world. Factors that drive its dispersion, diversification and success remain, however, poorly understood. To develop insight into cellular-level responses to nutrient drivers of eutrophication, RNA sequencing was coupled to a comprehensive metabolomics survey of
M. aeruginosa
sp. NIES 843 grown in various nutrient-reduced conditions. Transcriptomes were generated for cultures grown in nutrient-replete (with nitrate as the nitrogen (N) source), nitrogen-reduced (with nitrate, urea or ammonium acting as the N sources) and phosphate-reduced conditions. Extensive expression differences (up to 696 genes for urea-grown cells) relative to the control treatment were observed, demonstrating that the chemical variant of nitrogen available to cells affected transcriptional activity. Of particular note, a high number of transposase genes (up to 81) were significantly and reproducibly up-regulated relative to the control when grown on urea. Conversely, phosphorus (P) reduction resulted in a significant cessation in transcription of transposase genes, indicating that variation in nutrient chemistry may influence transcription of transposases and may impact the highly mosaic genomic architecture of
M. aeruginosa.
Corresponding metabolomes showed comparably few differences between treatments, suggesting broad changes to gene transcription are required to maintain metabolic homeostasis under nutrient reduction. The combined observations provide novel and extensive insight into the complex cellular interactions that take place in this important bloom-forming organism during variable nutrient conditions and highlight a potential unknown molecular mechanism that may drive
Microcystis
blooms and evolution.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24858783</pmid><doi>10.1038/ismej.2014.78</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2014-10, Vol.8 (10), p.2080-2092 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4184021 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 631/158/2459 631/208/212/2019 631/326/2565/855 Ammonium Biomedical and Life Sciences Cyanobacteria Ecology Eutrophication Evolutionary Biology Freshwater organisms Genome, Bacterial Homeostasis Life Sciences Microbial Ecology Microbial Genetics and Genomics Microbiology Microcystis Microcystis - genetics Microcystis - metabolism Microcystis aeruginosa Nitrates - metabolism Nitrogen Nitrogen - metabolism Nutrients Original original-article Phosphorus - metabolism Sequence Analysis, RNA Transcriptome Urea |
title | Nutrients drive transcriptional changes that maintain metabolic homeostasis but alter genome architecture in Microcystis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nutrients%20drive%20transcriptional%20changes%20that%20maintain%20metabolic%20homeostasis%20but%20alter%20genome%20architecture%20in%20Microcystis&rft.jtitle=The%20ISME%20Journal&rft.au=Steffen,%20Morgan%20M&rft.date=2014-10-01&rft.volume=8&rft.issue=10&rft.spage=2080&rft.epage=2092&rft.pages=2080-2092&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2014.78&rft_dat=%3Cproquest_pubme%3E3439614801%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1564149345&rft_id=info:pmid/24858783&rfr_iscdi=true |