A Short DNA Sequence Confers Strong Bleomycin Binding to Hairpin DNAs
Bleomycins A5 and B2 were used to study the structural features in hairpin DNAs conducive to strong BLM–DNA interaction. Two members of a 10-hairpin DNA library previously found to bind most tightly to these BLMs were subsequently noted to share the sequence 5′-ACGC (complementary strand sequence 5′...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2014-10, Vol.136 (39), p.13715-13726 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13726 |
---|---|
container_issue | 39 |
container_start_page | 13715 |
container_title | Journal of the American Chemical Society |
container_volume | 136 |
creator | Tang, Chenhong Paul, Ananya Alam, Mohammad P Roy, Basab Wilson, W. David Hecht, Sidney M |
description | Bleomycins A5 and B2 were used to study the structural features in hairpin DNAs conducive to strong BLM–DNA interaction. Two members of a 10-hairpin DNA library previously found to bind most tightly to these BLMs were subsequently noted to share the sequence 5′-ACGC (complementary strand sequence 5′-GCGT). Each underwent double-strand cleavage at five sites within, or near, an eight base pair region of the DNA duplex which had been randomized to create the original library. A new hairpin DNA library was selected based on affinity for immobilized Fe(III)·BLM A5. Two of the 30 newly identified DNAs also contained the sequence 5′-ACGC/5′-GCGT. These DNAs bound to the Fe(II)·BLMs more tightly than any DNA characterized previously. Surface plasmon resonance confirmed tight Fe(III)·BLM B2 binding and gave an excellent fit for a 1:1 binding model, implying the absence of significant secondary binding sites. Fe(II)·BLM A5 was used to assess sites of double-strand DNA cleavage. Both hairpin DNAs underwent double-strand cleavage at five sites within or near the original randomized eight base region. For DNA 12, four of the five double-strand cleavages involved independent single-strand cleavage reactions; DNA 13 underwent double-strand DNA cleavage by independent single-strand cleavages at all five sites. DNA 14, which bound Fe·BLM poorly, was converted to a strong binder (DNA 15) by insertion of the sequence 5′-ACGC/5′-GCGT. These findings reinforce the idea that tighter DNA binding by Fe·BLM leads to increased double-strand cleavage by a novel mechanism and identify a specific DNA motif conducive to strong BLM binding and cleavage. |
doi_str_mv | 10.1021/ja505733u |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4183661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1727692723</sourcerecordid><originalsourceid>FETCH-LOGICAL-a574t-aeefb7c959492b31ddd135f8a95a7bb7141832c55f009380e58d1226287a65e83</originalsourceid><addsrcrecordid>eNqNkU1PGzEQhi0EgkA58AfQXirBYVvPOP7YCxIJtEGK2kPas-Xd9cJGGzvYu0j59zVKiKhUqZxsjx8_8sxLyAXQL0ARvi4Np1wyNhyQEXCkOQcUh2REKcVcKsFOyGmMy3Qco4JjcoIclKIAI3J_my2efOizux9pZ58H6yqbTb1rbIjZog_ePWaTzvrVpmpdNmld3aZK77OZacM6ldLD-IkcNaaL9ny3npHf3-5_TWf5_Of3h-ntPDdcjvvcWNuUsip4MS6wZFDXNTDeKFNwI8tSwhgUw4rzhtKCKWq5qgFRoJJGcKvYGbnZetdDubJ1ZV0fTKfXoV2ZsNHetPrvG9c-6Uf_ol_FQkASXO0EwadeY69Xbaxs1xln_RA1phmxArn8PwpSIBWSg_wAilIUKJEl9HqLVsHHGGyz_zxQ_Rqm3oeZ2Mv33e7Jt_QS8HkLmCrqpR-CS8P_h-gPRDmjTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727692723</pqid></control><display><type>article</type><title>A Short DNA Sequence Confers Strong Bleomycin Binding to Hairpin DNAs</title><source>ACS Publications</source><source>MEDLINE</source><creator>Tang, Chenhong ; Paul, Ananya ; Alam, Mohammad P ; Roy, Basab ; Wilson, W. David ; Hecht, Sidney M</creator><creatorcontrib>Tang, Chenhong ; Paul, Ananya ; Alam, Mohammad P ; Roy, Basab ; Wilson, W. David ; Hecht, Sidney M</creatorcontrib><description>Bleomycins A5 and B2 were used to study the structural features in hairpin DNAs conducive to strong BLM–DNA interaction. Two members of a 10-hairpin DNA library previously found to bind most tightly to these BLMs were subsequently noted to share the sequence 5′-ACGC (complementary strand sequence 5′-GCGT). Each underwent double-strand cleavage at five sites within, or near, an eight base pair region of the DNA duplex which had been randomized to create the original library. A new hairpin DNA library was selected based on affinity for immobilized Fe(III)·BLM A5. Two of the 30 newly identified DNAs also contained the sequence 5′-ACGC/5′-GCGT. These DNAs bound to the Fe(II)·BLMs more tightly than any DNA characterized previously. Surface plasmon resonance confirmed tight Fe(III)·BLM B2 binding and gave an excellent fit for a 1:1 binding model, implying the absence of significant secondary binding sites. Fe(II)·BLM A5 was used to assess sites of double-strand DNA cleavage. Both hairpin DNAs underwent double-strand cleavage at five sites within or near the original randomized eight base region. For DNA 12, four of the five double-strand cleavages involved independent single-strand cleavage reactions; DNA 13 underwent double-strand DNA cleavage by independent single-strand cleavages at all five sites. DNA 14, which bound Fe·BLM poorly, was converted to a strong binder (DNA 15) by insertion of the sequence 5′-ACGC/5′-GCGT. These findings reinforce the idea that tighter DNA binding by Fe·BLM leads to increased double-strand cleavage by a novel mechanism and identify a specific DNA motif conducive to strong BLM binding and cleavage.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja505733u</identifier><identifier>PMID: 25188011</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Affinity ; Base Sequence ; Binding ; Binding Sites ; Bleomycin - chemistry ; Bleomycin - pharmacology ; Cleavage ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - drug effects ; DNA Cleavage - drug effects ; DNA damage ; DNA libraries ; Ferrous Compounds - chemistry ; Ferrous Compounds - pharmacology ; Gene sequencing ; Insertion ; iron ; Libraries ; Molecular Conformation ; nucleotide sequences ; Plasmons ; surface plasmon resonance</subject><ispartof>Journal of the American Chemical Society, 2014-10, Vol.136 (39), p.13715-13726</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright © 2014 American Chemical Society 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a574t-aeefb7c959492b31ddd135f8a95a7bb7141832c55f009380e58d1226287a65e83</citedby><cites>FETCH-LOGICAL-a574t-aeefb7c959492b31ddd135f8a95a7bb7141832c55f009380e58d1226287a65e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja505733u$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja505733u$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25188011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Chenhong</creatorcontrib><creatorcontrib>Paul, Ananya</creatorcontrib><creatorcontrib>Alam, Mohammad P</creatorcontrib><creatorcontrib>Roy, Basab</creatorcontrib><creatorcontrib>Wilson, W. David</creatorcontrib><creatorcontrib>Hecht, Sidney M</creatorcontrib><title>A Short DNA Sequence Confers Strong Bleomycin Binding to Hairpin DNAs</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Bleomycins A5 and B2 were used to study the structural features in hairpin DNAs conducive to strong BLM–DNA interaction. Two members of a 10-hairpin DNA library previously found to bind most tightly to these BLMs were subsequently noted to share the sequence 5′-ACGC (complementary strand sequence 5′-GCGT). Each underwent double-strand cleavage at five sites within, or near, an eight base pair region of the DNA duplex which had been randomized to create the original library. A new hairpin DNA library was selected based on affinity for immobilized Fe(III)·BLM A5. Two of the 30 newly identified DNAs also contained the sequence 5′-ACGC/5′-GCGT. These DNAs bound to the Fe(II)·BLMs more tightly than any DNA characterized previously. Surface plasmon resonance confirmed tight Fe(III)·BLM B2 binding and gave an excellent fit for a 1:1 binding model, implying the absence of significant secondary binding sites. Fe(II)·BLM A5 was used to assess sites of double-strand DNA cleavage. Both hairpin DNAs underwent double-strand cleavage at five sites within or near the original randomized eight base region. For DNA 12, four of the five double-strand cleavages involved independent single-strand cleavage reactions; DNA 13 underwent double-strand DNA cleavage by independent single-strand cleavages at all five sites. DNA 14, which bound Fe·BLM poorly, was converted to a strong binder (DNA 15) by insertion of the sequence 5′-ACGC/5′-GCGT. These findings reinforce the idea that tighter DNA binding by Fe·BLM leads to increased double-strand cleavage by a novel mechanism and identify a specific DNA motif conducive to strong BLM binding and cleavage.</description><subject>Affinity</subject><subject>Base Sequence</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Bleomycin - chemistry</subject><subject>Bleomycin - pharmacology</subject><subject>Cleavage</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - drug effects</subject><subject>DNA Cleavage - drug effects</subject><subject>DNA damage</subject><subject>DNA libraries</subject><subject>Ferrous Compounds - chemistry</subject><subject>Ferrous Compounds - pharmacology</subject><subject>Gene sequencing</subject><subject>Insertion</subject><subject>iron</subject><subject>Libraries</subject><subject>Molecular Conformation</subject><subject>nucleotide sequences</subject><subject>Plasmons</subject><subject>surface plasmon resonance</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1PGzEQhi0EgkA58AfQXirBYVvPOP7YCxIJtEGK2kPas-Xd9cJGGzvYu0j59zVKiKhUqZxsjx8_8sxLyAXQL0ARvi4Np1wyNhyQEXCkOQcUh2REKcVcKsFOyGmMy3Qco4JjcoIclKIAI3J_my2efOizux9pZ58H6yqbTb1rbIjZog_ePWaTzvrVpmpdNmld3aZK77OZacM6ldLD-IkcNaaL9ny3npHf3-5_TWf5_Of3h-ntPDdcjvvcWNuUsip4MS6wZFDXNTDeKFNwI8tSwhgUw4rzhtKCKWq5qgFRoJJGcKvYGbnZetdDubJ1ZV0fTKfXoV2ZsNHetPrvG9c-6Uf_ol_FQkASXO0EwadeY69Xbaxs1xln_RA1phmxArn8PwpSIBWSg_wAilIUKJEl9HqLVsHHGGyz_zxQ_Rqm3oeZ2Mv33e7Jt_QS8HkLmCrqpR-CS8P_h-gPRDmjTQ</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Tang, Chenhong</creator><creator>Paul, Ananya</creator><creator>Alam, Mohammad P</creator><creator>Roy, Basab</creator><creator>Wilson, W. David</creator><creator>Hecht, Sidney M</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20141001</creationdate><title>A Short DNA Sequence Confers Strong Bleomycin Binding to Hairpin DNAs</title><author>Tang, Chenhong ; Paul, Ananya ; Alam, Mohammad P ; Roy, Basab ; Wilson, W. David ; Hecht, Sidney M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a574t-aeefb7c959492b31ddd135f8a95a7bb7141832c55f009380e58d1226287a65e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Affinity</topic><topic>Base Sequence</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Bleomycin - chemistry</topic><topic>Bleomycin - pharmacology</topic><topic>Cleavage</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - drug effects</topic><topic>DNA Cleavage - drug effects</topic><topic>DNA damage</topic><topic>DNA libraries</topic><topic>Ferrous Compounds - chemistry</topic><topic>Ferrous Compounds - pharmacology</topic><topic>Gene sequencing</topic><topic>Insertion</topic><topic>iron</topic><topic>Libraries</topic><topic>Molecular Conformation</topic><topic>nucleotide sequences</topic><topic>Plasmons</topic><topic>surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Chenhong</creatorcontrib><creatorcontrib>Paul, Ananya</creatorcontrib><creatorcontrib>Alam, Mohammad P</creatorcontrib><creatorcontrib>Roy, Basab</creatorcontrib><creatorcontrib>Wilson, W. David</creatorcontrib><creatorcontrib>Hecht, Sidney M</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Chenhong</au><au>Paul, Ananya</au><au>Alam, Mohammad P</au><au>Roy, Basab</au><au>Wilson, W. David</au><au>Hecht, Sidney M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Short DNA Sequence Confers Strong Bleomycin Binding to Hairpin DNAs</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>136</volume><issue>39</issue><spage>13715</spage><epage>13726</epage><pages>13715-13726</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Bleomycins A5 and B2 were used to study the structural features in hairpin DNAs conducive to strong BLM–DNA interaction. Two members of a 10-hairpin DNA library previously found to bind most tightly to these BLMs were subsequently noted to share the sequence 5′-ACGC (complementary strand sequence 5′-GCGT). Each underwent double-strand cleavage at five sites within, or near, an eight base pair region of the DNA duplex which had been randomized to create the original library. A new hairpin DNA library was selected based on affinity for immobilized Fe(III)·BLM A5. Two of the 30 newly identified DNAs also contained the sequence 5′-ACGC/5′-GCGT. These DNAs bound to the Fe(II)·BLMs more tightly than any DNA characterized previously. Surface plasmon resonance confirmed tight Fe(III)·BLM B2 binding and gave an excellent fit for a 1:1 binding model, implying the absence of significant secondary binding sites. Fe(II)·BLM A5 was used to assess sites of double-strand DNA cleavage. Both hairpin DNAs underwent double-strand cleavage at five sites within or near the original randomized eight base region. For DNA 12, four of the five double-strand cleavages involved independent single-strand cleavage reactions; DNA 13 underwent double-strand DNA cleavage by independent single-strand cleavages at all five sites. DNA 14, which bound Fe·BLM poorly, was converted to a strong binder (DNA 15) by insertion of the sequence 5′-ACGC/5′-GCGT. These findings reinforce the idea that tighter DNA binding by Fe·BLM leads to increased double-strand cleavage by a novel mechanism and identify a specific DNA motif conducive to strong BLM binding and cleavage.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25188011</pmid><doi>10.1021/ja505733u</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2014-10, Vol.136 (39), p.13715-13726 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4183661 |
source | ACS Publications; MEDLINE |
subjects | Affinity Base Sequence Binding Binding Sites Bleomycin - chemistry Bleomycin - pharmacology Cleavage Deoxyribonucleic acid DNA DNA - chemistry DNA - drug effects DNA Cleavage - drug effects DNA damage DNA libraries Ferrous Compounds - chemistry Ferrous Compounds - pharmacology Gene sequencing Insertion iron Libraries Molecular Conformation nucleotide sequences Plasmons surface plasmon resonance |
title | A Short DNA Sequence Confers Strong Bleomycin Binding to Hairpin DNAs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Short%20DNA%20Sequence%20Confers%20Strong%20Bleomycin%20Binding%20to%20Hairpin%20DNAs&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Tang,%20Chenhong&rft.date=2014-10-01&rft.volume=136&rft.issue=39&rft.spage=13715&rft.epage=13726&rft.pages=13715-13726&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja505733u&rft_dat=%3Cproquest_pubme%3E1727692723%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1727692723&rft_id=info:pmid/25188011&rfr_iscdi=true |