Uniform Fluorescent Nanobioprobes for Pathogen Detection

Manipulating biochemical reactions in living cells to synthesize nanomaterials is an attractive strategy to realize their synthesis that cannot take place in nature. Yeast cells have been skillfully utilized to produce desired nanoparticles through spatiotemporal coupling of intracellular nonrelated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2014-05, Vol.8 (5), p.5116-5124
Hauptverfasser: Xiong, Ling-Hong, Cui, Ran, Zhang, Zhi-Ling, Yu, Xu, Xie, Zhixiong, Shi, Yun-Bo, Pang, Dai-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5124
container_issue 5
container_start_page 5116
container_title ACS nano
container_volume 8
creator Xiong, Ling-Hong
Cui, Ran
Zhang, Zhi-Ling
Yu, Xu
Xie, Zhixiong
Shi, Yun-Bo
Pang, Dai-Wen
description Manipulating biochemical reactions in living cells to synthesize nanomaterials is an attractive strategy to realize their synthesis that cannot take place in nature. Yeast cells have been skillfully utilized to produce desired nanoparticles through spatiotemporal coupling of intracellular nonrelated biochemical reaction pathways for formation of fluorescent CdSe quantum dots. Here, we have successfully transformed Staphylococcus aureus cells into cellular beacons (fluorescing cells), all of which are highly fluorescent and photostable with perfect uniformity. Importantly, on the basis of such cells, we efficiently fabricated fluorescent nanobioprobes by a specific interaction between the protein A expressed on the S. aureus surface and the Fc fragment domain of antibodies, avoiding the use of other common methods for cell surface modifications, such as molecular covalent connection or more difficult genetic and metabolic engineering. Coupled with immunomagnetic beads, the resulting fluorescent-biotargeting bifunctional cells, i.e., biotargeting cellular beacons, can be employed as nanobioprobes for detection of viruses, bacteria, and tumor cells. With this method, H9N2 AIV can be detected specifically with a limit of 8.94 ng/mL (based on protein content). Furthermore, diverse probes for detection of different pathogens or for other biomedical applications can be easily obtained by simply changing the antibody conjugated to the cell surface.
doi_str_mv 10.1021/nn501174g
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4182866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c922724126</sourcerecordid><originalsourceid>FETCH-LOGICAL-a471t-2ea97df4450cd2e3ae05d473d0023958c5f0ebdd04adb928b6a3a85302b78f883</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMotn4c_AOyFw8eViff2Ysg1apQ1IMFbyG7ybZb2qQkW8F_75bqouBpBt53npl5ETrDcIWB4GvvOWAs2WwPDXFBRQ5KvO_3PccDdJTSAoBLJcUhGhAmZSEkHyI19U0d4iobLzchulQ532bPxoeyCesYSpeyTs5eTTsPM-ezO9e6qm2CP0EHtVkmd_pdj9F0fP82eswnLw9Po9tJbpjEbU6cKaStGeNQWeKoccAtk9QCEFpwVfEaXGktMGPLgqhSGGoUp0BKqWql6DG62XHXm3Ll7Pa-aJZ6HZuViZ86mEb_VXwz17PwoRlWRAnRAS53gCqGlKKr-1kMehuf7uPrvOe_l_XOn7w6w8XOYKqkF2ETfff7P6AvaE54bQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform Fluorescent Nanobioprobes for Pathogen Detection</title><source>MEDLINE</source><source>ACS Publications</source><creator>Xiong, Ling-Hong ; Cui, Ran ; Zhang, Zhi-Ling ; Yu, Xu ; Xie, Zhixiong ; Shi, Yun-Bo ; Pang, Dai-Wen</creator><creatorcontrib>Xiong, Ling-Hong ; Cui, Ran ; Zhang, Zhi-Ling ; Yu, Xu ; Xie, Zhixiong ; Shi, Yun-Bo ; Pang, Dai-Wen</creatorcontrib><description>Manipulating biochemical reactions in living cells to synthesize nanomaterials is an attractive strategy to realize their synthesis that cannot take place in nature. Yeast cells have been skillfully utilized to produce desired nanoparticles through spatiotemporal coupling of intracellular nonrelated biochemical reaction pathways for formation of fluorescent CdSe quantum dots. Here, we have successfully transformed Staphylococcus aureus cells into cellular beacons (fluorescing cells), all of which are highly fluorescent and photostable with perfect uniformity. Importantly, on the basis of such cells, we efficiently fabricated fluorescent nanobioprobes by a specific interaction between the protein A expressed on the S. aureus surface and the Fc fragment domain of antibodies, avoiding the use of other common methods for cell surface modifications, such as molecular covalent connection or more difficult genetic and metabolic engineering. Coupled with immunomagnetic beads, the resulting fluorescent-biotargeting bifunctional cells, i.e., biotargeting cellular beacons, can be employed as nanobioprobes for detection of viruses, bacteria, and tumor cells. With this method, H9N2 AIV can be detected specifically with a limit of 8.94 ng/mL (based on protein content). Furthermore, diverse probes for detection of different pathogens or for other biomedical applications can be easily obtained by simply changing the antibody conjugated to the cell surface.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn501174g</identifier><identifier>PMID: 24779675</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensing Techniques ; Cell Line, Tumor ; Equipment Design ; Fluorescent Dyes - chemistry ; Humans ; Immunoglobulin Fc Fragments - chemistry ; Immunomagnetic Separation ; Influenza A Virus, H9N2 Subtype ; Ligands ; Limit of Detection ; Materials Testing ; Metabolic Engineering ; Microscopy, Electron ; Microscopy, Electron, Transmission ; Microscopy, Fluorescence ; Nanoparticles - chemistry ; Nanostructures - chemistry ; Nanotechnology - methods ; Optics and Photonics ; Quantum Dots ; Selenium - chemistry ; Staphylococcus aureus</subject><ispartof>ACS nano, 2014-05, Vol.8 (5), p.5116-5124</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2014 American Chemical Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a471t-2ea97df4450cd2e3ae05d473d0023958c5f0ebdd04adb928b6a3a85302b78f883</citedby><cites>FETCH-LOGICAL-a471t-2ea97df4450cd2e3ae05d473d0023958c5f0ebdd04adb928b6a3a85302b78f883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn501174g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn501174g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24779675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Ling-Hong</creatorcontrib><creatorcontrib>Cui, Ran</creatorcontrib><creatorcontrib>Zhang, Zhi-Ling</creatorcontrib><creatorcontrib>Yu, Xu</creatorcontrib><creatorcontrib>Xie, Zhixiong</creatorcontrib><creatorcontrib>Shi, Yun-Bo</creatorcontrib><creatorcontrib>Pang, Dai-Wen</creatorcontrib><title>Uniform Fluorescent Nanobioprobes for Pathogen Detection</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Manipulating biochemical reactions in living cells to synthesize nanomaterials is an attractive strategy to realize their synthesis that cannot take place in nature. Yeast cells have been skillfully utilized to produce desired nanoparticles through spatiotemporal coupling of intracellular nonrelated biochemical reaction pathways for formation of fluorescent CdSe quantum dots. Here, we have successfully transformed Staphylococcus aureus cells into cellular beacons (fluorescing cells), all of which are highly fluorescent and photostable with perfect uniformity. Importantly, on the basis of such cells, we efficiently fabricated fluorescent nanobioprobes by a specific interaction between the protein A expressed on the S. aureus surface and the Fc fragment domain of antibodies, avoiding the use of other common methods for cell surface modifications, such as molecular covalent connection or more difficult genetic and metabolic engineering. Coupled with immunomagnetic beads, the resulting fluorescent-biotargeting bifunctional cells, i.e., biotargeting cellular beacons, can be employed as nanobioprobes for detection of viruses, bacteria, and tumor cells. With this method, H9N2 AIV can be detected specifically with a limit of 8.94 ng/mL (based on protein content). Furthermore, diverse probes for detection of different pathogens or for other biomedical applications can be easily obtained by simply changing the antibody conjugated to the cell surface.</description><subject>Biosensing Techniques</subject><subject>Cell Line, Tumor</subject><subject>Equipment Design</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Humans</subject><subject>Immunoglobulin Fc Fragments - chemistry</subject><subject>Immunomagnetic Separation</subject><subject>Influenza A Virus, H9N2 Subtype</subject><subject>Ligands</subject><subject>Limit of Detection</subject><subject>Materials Testing</subject><subject>Metabolic Engineering</subject><subject>Microscopy, Electron</subject><subject>Microscopy, Electron, Transmission</subject><subject>Microscopy, Fluorescence</subject><subject>Nanoparticles - chemistry</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Optics and Photonics</subject><subject>Quantum Dots</subject><subject>Selenium - chemistry</subject><subject>Staphylococcus aureus</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LAzEQhoMotn4c_AOyFw8eViff2Ysg1apQ1IMFbyG7ybZb2qQkW8F_75bqouBpBt53npl5ETrDcIWB4GvvOWAs2WwPDXFBRQ5KvO_3PccDdJTSAoBLJcUhGhAmZSEkHyI19U0d4iobLzchulQ532bPxoeyCesYSpeyTs5eTTsPM-ezO9e6qm2CP0EHtVkmd_pdj9F0fP82eswnLw9Po9tJbpjEbU6cKaStGeNQWeKoccAtk9QCEFpwVfEaXGktMGPLgqhSGGoUp0BKqWql6DG62XHXm3Ll7Pa-aJZ6HZuViZ86mEb_VXwz17PwoRlWRAnRAS53gCqGlKKr-1kMehuf7uPrvOe_l_XOn7w6w8XOYKqkF2ETfff7P6AvaE54bQ</recordid><startdate>20140527</startdate><enddate>20140527</enddate><creator>Xiong, Ling-Hong</creator><creator>Cui, Ran</creator><creator>Zhang, Zhi-Ling</creator><creator>Yu, Xu</creator><creator>Xie, Zhixiong</creator><creator>Shi, Yun-Bo</creator><creator>Pang, Dai-Wen</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140527</creationdate><title>Uniform Fluorescent Nanobioprobes for Pathogen Detection</title><author>Xiong, Ling-Hong ; Cui, Ran ; Zhang, Zhi-Ling ; Yu, Xu ; Xie, Zhixiong ; Shi, Yun-Bo ; Pang, Dai-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a471t-2ea97df4450cd2e3ae05d473d0023958c5f0ebdd04adb928b6a3a85302b78f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biosensing Techniques</topic><topic>Cell Line, Tumor</topic><topic>Equipment Design</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Humans</topic><topic>Immunoglobulin Fc Fragments - chemistry</topic><topic>Immunomagnetic Separation</topic><topic>Influenza A Virus, H9N2 Subtype</topic><topic>Ligands</topic><topic>Limit of Detection</topic><topic>Materials Testing</topic><topic>Metabolic Engineering</topic><topic>Microscopy, Electron</topic><topic>Microscopy, Electron, Transmission</topic><topic>Microscopy, Fluorescence</topic><topic>Nanoparticles - chemistry</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Optics and Photonics</topic><topic>Quantum Dots</topic><topic>Selenium - chemistry</topic><topic>Staphylococcus aureus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Ling-Hong</creatorcontrib><creatorcontrib>Cui, Ran</creatorcontrib><creatorcontrib>Zhang, Zhi-Ling</creatorcontrib><creatorcontrib>Yu, Xu</creatorcontrib><creatorcontrib>Xie, Zhixiong</creatorcontrib><creatorcontrib>Shi, Yun-Bo</creatorcontrib><creatorcontrib>Pang, Dai-Wen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Ling-Hong</au><au>Cui, Ran</au><au>Zhang, Zhi-Ling</au><au>Yu, Xu</au><au>Xie, Zhixiong</au><au>Shi, Yun-Bo</au><au>Pang, Dai-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform Fluorescent Nanobioprobes for Pathogen Detection</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2014-05-27</date><risdate>2014</risdate><volume>8</volume><issue>5</issue><spage>5116</spage><epage>5124</epage><pages>5116-5124</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Manipulating biochemical reactions in living cells to synthesize nanomaterials is an attractive strategy to realize their synthesis that cannot take place in nature. Yeast cells have been skillfully utilized to produce desired nanoparticles through spatiotemporal coupling of intracellular nonrelated biochemical reaction pathways for formation of fluorescent CdSe quantum dots. Here, we have successfully transformed Staphylococcus aureus cells into cellular beacons (fluorescing cells), all of which are highly fluorescent and photostable with perfect uniformity. Importantly, on the basis of such cells, we efficiently fabricated fluorescent nanobioprobes by a specific interaction between the protein A expressed on the S. aureus surface and the Fc fragment domain of antibodies, avoiding the use of other common methods for cell surface modifications, such as molecular covalent connection or more difficult genetic and metabolic engineering. Coupled with immunomagnetic beads, the resulting fluorescent-biotargeting bifunctional cells, i.e., biotargeting cellular beacons, can be employed as nanobioprobes for detection of viruses, bacteria, and tumor cells. With this method, H9N2 AIV can be detected specifically with a limit of 8.94 ng/mL (based on protein content). Furthermore, diverse probes for detection of different pathogens or for other biomedical applications can be easily obtained by simply changing the antibody conjugated to the cell surface.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24779675</pmid><doi>10.1021/nn501174g</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2014-05, Vol.8 (5), p.5116-5124
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4182866
source MEDLINE; ACS Publications
subjects Biosensing Techniques
Cell Line, Tumor
Equipment Design
Fluorescent Dyes - chemistry
Humans
Immunoglobulin Fc Fragments - chemistry
Immunomagnetic Separation
Influenza A Virus, H9N2 Subtype
Ligands
Limit of Detection
Materials Testing
Metabolic Engineering
Microscopy, Electron
Microscopy, Electron, Transmission
Microscopy, Fluorescence
Nanoparticles - chemistry
Nanostructures - chemistry
Nanotechnology - methods
Optics and Photonics
Quantum Dots
Selenium - chemistry
Staphylococcus aureus
title Uniform Fluorescent Nanobioprobes for Pathogen Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20Fluorescent%20Nanobioprobes%20for%20Pathogen%20Detection&rft.jtitle=ACS%20nano&rft.au=Xiong,%20Ling-Hong&rft.date=2014-05-27&rft.volume=8&rft.issue=5&rft.spage=5116&rft.epage=5124&rft.pages=5116-5124&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn501174g&rft_dat=%3Cacs_pubme%3Ec922724126%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24779675&rfr_iscdi=true