Uniform Fluorescent Nanobioprobes for Pathogen Detection
Manipulating biochemical reactions in living cells to synthesize nanomaterials is an attractive strategy to realize their synthesis that cannot take place in nature. Yeast cells have been skillfully utilized to produce desired nanoparticles through spatiotemporal coupling of intracellular nonrelated...
Gespeichert in:
Veröffentlicht in: | ACS nano 2014-05, Vol.8 (5), p.5116-5124 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5124 |
---|---|
container_issue | 5 |
container_start_page | 5116 |
container_title | ACS nano |
container_volume | 8 |
creator | Xiong, Ling-Hong Cui, Ran Zhang, Zhi-Ling Yu, Xu Xie, Zhixiong Shi, Yun-Bo Pang, Dai-Wen |
description | Manipulating biochemical reactions in living cells to synthesize nanomaterials is an attractive strategy to realize their synthesis that cannot take place in nature. Yeast cells have been skillfully utilized to produce desired nanoparticles through spatiotemporal coupling of intracellular nonrelated biochemical reaction pathways for formation of fluorescent CdSe quantum dots. Here, we have successfully transformed Staphylococcus aureus cells into cellular beacons (fluorescing cells), all of which are highly fluorescent and photostable with perfect uniformity. Importantly, on the basis of such cells, we efficiently fabricated fluorescent nanobioprobes by a specific interaction between the protein A expressed on the S. aureus surface and the Fc fragment domain of antibodies, avoiding the use of other common methods for cell surface modifications, such as molecular covalent connection or more difficult genetic and metabolic engineering. Coupled with immunomagnetic beads, the resulting fluorescent-biotargeting bifunctional cells, i.e., biotargeting cellular beacons, can be employed as nanobioprobes for detection of viruses, bacteria, and tumor cells. With this method, H9N2 AIV can be detected specifically with a limit of 8.94 ng/mL (based on protein content). Furthermore, diverse probes for detection of different pathogens or for other biomedical applications can be easily obtained by simply changing the antibody conjugated to the cell surface. |
doi_str_mv | 10.1021/nn501174g |
format | Article |
fullrecord | <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4182866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c922724126</sourcerecordid><originalsourceid>FETCH-LOGICAL-a471t-2ea97df4450cd2e3ae05d473d0023958c5f0ebdd04adb928b6a3a85302b78f883</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMotn4c_AOyFw8eViff2Ysg1apQ1IMFbyG7ybZb2qQkW8F_75bqouBpBt53npl5ETrDcIWB4GvvOWAs2WwPDXFBRQ5KvO_3PccDdJTSAoBLJcUhGhAmZSEkHyI19U0d4iobLzchulQ532bPxoeyCesYSpeyTs5eTTsPM-ezO9e6qm2CP0EHtVkmd_pdj9F0fP82eswnLw9Po9tJbpjEbU6cKaStGeNQWeKoccAtk9QCEFpwVfEaXGktMGPLgqhSGGoUp0BKqWql6DG62XHXm3Ll7Pa-aJZ6HZuViZ86mEb_VXwz17PwoRlWRAnRAS53gCqGlKKr-1kMehuf7uPrvOe_l_XOn7w6w8XOYKqkF2ETfff7P6AvaE54bQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform Fluorescent Nanobioprobes for Pathogen Detection</title><source>MEDLINE</source><source>ACS Publications</source><creator>Xiong, Ling-Hong ; Cui, Ran ; Zhang, Zhi-Ling ; Yu, Xu ; Xie, Zhixiong ; Shi, Yun-Bo ; Pang, Dai-Wen</creator><creatorcontrib>Xiong, Ling-Hong ; Cui, Ran ; Zhang, Zhi-Ling ; Yu, Xu ; Xie, Zhixiong ; Shi, Yun-Bo ; Pang, Dai-Wen</creatorcontrib><description>Manipulating biochemical reactions in living cells to synthesize nanomaterials is an attractive strategy to realize their synthesis that cannot take place in nature. Yeast cells have been skillfully utilized to produce desired nanoparticles through spatiotemporal coupling of intracellular nonrelated biochemical reaction pathways for formation of fluorescent CdSe quantum dots. Here, we have successfully transformed Staphylococcus aureus cells into cellular beacons (fluorescing cells), all of which are highly fluorescent and photostable with perfect uniformity. Importantly, on the basis of such cells, we efficiently fabricated fluorescent nanobioprobes by a specific interaction between the protein A expressed on the S. aureus surface and the Fc fragment domain of antibodies, avoiding the use of other common methods for cell surface modifications, such as molecular covalent connection or more difficult genetic and metabolic engineering. Coupled with immunomagnetic beads, the resulting fluorescent-biotargeting bifunctional cells, i.e., biotargeting cellular beacons, can be employed as nanobioprobes for detection of viruses, bacteria, and tumor cells. With this method, H9N2 AIV can be detected specifically with a limit of 8.94 ng/mL (based on protein content). Furthermore, diverse probes for detection of different pathogens or for other biomedical applications can be easily obtained by simply changing the antibody conjugated to the cell surface.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn501174g</identifier><identifier>PMID: 24779675</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensing Techniques ; Cell Line, Tumor ; Equipment Design ; Fluorescent Dyes - chemistry ; Humans ; Immunoglobulin Fc Fragments - chemistry ; Immunomagnetic Separation ; Influenza A Virus, H9N2 Subtype ; Ligands ; Limit of Detection ; Materials Testing ; Metabolic Engineering ; Microscopy, Electron ; Microscopy, Electron, Transmission ; Microscopy, Fluorescence ; Nanoparticles - chemistry ; Nanostructures - chemistry ; Nanotechnology - methods ; Optics and Photonics ; Quantum Dots ; Selenium - chemistry ; Staphylococcus aureus</subject><ispartof>ACS nano, 2014-05, Vol.8 (5), p.5116-5124</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2014 American Chemical Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a471t-2ea97df4450cd2e3ae05d473d0023958c5f0ebdd04adb928b6a3a85302b78f883</citedby><cites>FETCH-LOGICAL-a471t-2ea97df4450cd2e3ae05d473d0023958c5f0ebdd04adb928b6a3a85302b78f883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn501174g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn501174g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24779675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Ling-Hong</creatorcontrib><creatorcontrib>Cui, Ran</creatorcontrib><creatorcontrib>Zhang, Zhi-Ling</creatorcontrib><creatorcontrib>Yu, Xu</creatorcontrib><creatorcontrib>Xie, Zhixiong</creatorcontrib><creatorcontrib>Shi, Yun-Bo</creatorcontrib><creatorcontrib>Pang, Dai-Wen</creatorcontrib><title>Uniform Fluorescent Nanobioprobes for Pathogen Detection</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Manipulating biochemical reactions in living cells to synthesize nanomaterials is an attractive strategy to realize their synthesis that cannot take place in nature. Yeast cells have been skillfully utilized to produce desired nanoparticles through spatiotemporal coupling of intracellular nonrelated biochemical reaction pathways for formation of fluorescent CdSe quantum dots. Here, we have successfully transformed Staphylococcus aureus cells into cellular beacons (fluorescing cells), all of which are highly fluorescent and photostable with perfect uniformity. Importantly, on the basis of such cells, we efficiently fabricated fluorescent nanobioprobes by a specific interaction between the protein A expressed on the S. aureus surface and the Fc fragment domain of antibodies, avoiding the use of other common methods for cell surface modifications, such as molecular covalent connection or more difficult genetic and metabolic engineering. Coupled with immunomagnetic beads, the resulting fluorescent-biotargeting bifunctional cells, i.e., biotargeting cellular beacons, can be employed as nanobioprobes for detection of viruses, bacteria, and tumor cells. With this method, H9N2 AIV can be detected specifically with a limit of 8.94 ng/mL (based on protein content). Furthermore, diverse probes for detection of different pathogens or for other biomedical applications can be easily obtained by simply changing the antibody conjugated to the cell surface.</description><subject>Biosensing Techniques</subject><subject>Cell Line, Tumor</subject><subject>Equipment Design</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Humans</subject><subject>Immunoglobulin Fc Fragments - chemistry</subject><subject>Immunomagnetic Separation</subject><subject>Influenza A Virus, H9N2 Subtype</subject><subject>Ligands</subject><subject>Limit of Detection</subject><subject>Materials Testing</subject><subject>Metabolic Engineering</subject><subject>Microscopy, Electron</subject><subject>Microscopy, Electron, Transmission</subject><subject>Microscopy, Fluorescence</subject><subject>Nanoparticles - chemistry</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Optics and Photonics</subject><subject>Quantum Dots</subject><subject>Selenium - chemistry</subject><subject>Staphylococcus aureus</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LAzEQhoMotn4c_AOyFw8eViff2Ysg1apQ1IMFbyG7ybZb2qQkW8F_75bqouBpBt53npl5ETrDcIWB4GvvOWAs2WwPDXFBRQ5KvO_3PccDdJTSAoBLJcUhGhAmZSEkHyI19U0d4iobLzchulQ532bPxoeyCesYSpeyTs5eTTsPM-ezO9e6qm2CP0EHtVkmd_pdj9F0fP82eswnLw9Po9tJbpjEbU6cKaStGeNQWeKoccAtk9QCEFpwVfEaXGktMGPLgqhSGGoUp0BKqWql6DG62XHXm3Ll7Pa-aJZ6HZuViZ86mEb_VXwz17PwoRlWRAnRAS53gCqGlKKr-1kMehuf7uPrvOe_l_XOn7w6w8XOYKqkF2ETfff7P6AvaE54bQ</recordid><startdate>20140527</startdate><enddate>20140527</enddate><creator>Xiong, Ling-Hong</creator><creator>Cui, Ran</creator><creator>Zhang, Zhi-Ling</creator><creator>Yu, Xu</creator><creator>Xie, Zhixiong</creator><creator>Shi, Yun-Bo</creator><creator>Pang, Dai-Wen</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140527</creationdate><title>Uniform Fluorescent Nanobioprobes for Pathogen Detection</title><author>Xiong, Ling-Hong ; Cui, Ran ; Zhang, Zhi-Ling ; Yu, Xu ; Xie, Zhixiong ; Shi, Yun-Bo ; Pang, Dai-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a471t-2ea97df4450cd2e3ae05d473d0023958c5f0ebdd04adb928b6a3a85302b78f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biosensing Techniques</topic><topic>Cell Line, Tumor</topic><topic>Equipment Design</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Humans</topic><topic>Immunoglobulin Fc Fragments - chemistry</topic><topic>Immunomagnetic Separation</topic><topic>Influenza A Virus, H9N2 Subtype</topic><topic>Ligands</topic><topic>Limit of Detection</topic><topic>Materials Testing</topic><topic>Metabolic Engineering</topic><topic>Microscopy, Electron</topic><topic>Microscopy, Electron, Transmission</topic><topic>Microscopy, Fluorescence</topic><topic>Nanoparticles - chemistry</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Optics and Photonics</topic><topic>Quantum Dots</topic><topic>Selenium - chemistry</topic><topic>Staphylococcus aureus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Ling-Hong</creatorcontrib><creatorcontrib>Cui, Ran</creatorcontrib><creatorcontrib>Zhang, Zhi-Ling</creatorcontrib><creatorcontrib>Yu, Xu</creatorcontrib><creatorcontrib>Xie, Zhixiong</creatorcontrib><creatorcontrib>Shi, Yun-Bo</creatorcontrib><creatorcontrib>Pang, Dai-Wen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Ling-Hong</au><au>Cui, Ran</au><au>Zhang, Zhi-Ling</au><au>Yu, Xu</au><au>Xie, Zhixiong</au><au>Shi, Yun-Bo</au><au>Pang, Dai-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform Fluorescent Nanobioprobes for Pathogen Detection</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2014-05-27</date><risdate>2014</risdate><volume>8</volume><issue>5</issue><spage>5116</spage><epage>5124</epage><pages>5116-5124</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Manipulating biochemical reactions in living cells to synthesize nanomaterials is an attractive strategy to realize their synthesis that cannot take place in nature. Yeast cells have been skillfully utilized to produce desired nanoparticles through spatiotemporal coupling of intracellular nonrelated biochemical reaction pathways for formation of fluorescent CdSe quantum dots. Here, we have successfully transformed Staphylococcus aureus cells into cellular beacons (fluorescing cells), all of which are highly fluorescent and photostable with perfect uniformity. Importantly, on the basis of such cells, we efficiently fabricated fluorescent nanobioprobes by a specific interaction between the protein A expressed on the S. aureus surface and the Fc fragment domain of antibodies, avoiding the use of other common methods for cell surface modifications, such as molecular covalent connection or more difficult genetic and metabolic engineering. Coupled with immunomagnetic beads, the resulting fluorescent-biotargeting bifunctional cells, i.e., biotargeting cellular beacons, can be employed as nanobioprobes for detection of viruses, bacteria, and tumor cells. With this method, H9N2 AIV can be detected specifically with a limit of 8.94 ng/mL (based on protein content). Furthermore, diverse probes for detection of different pathogens or for other biomedical applications can be easily obtained by simply changing the antibody conjugated to the cell surface.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24779675</pmid><doi>10.1021/nn501174g</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2014-05, Vol.8 (5), p.5116-5124 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4182866 |
source | MEDLINE; ACS Publications |
subjects | Biosensing Techniques Cell Line, Tumor Equipment Design Fluorescent Dyes - chemistry Humans Immunoglobulin Fc Fragments - chemistry Immunomagnetic Separation Influenza A Virus, H9N2 Subtype Ligands Limit of Detection Materials Testing Metabolic Engineering Microscopy, Electron Microscopy, Electron, Transmission Microscopy, Fluorescence Nanoparticles - chemistry Nanostructures - chemistry Nanotechnology - methods Optics and Photonics Quantum Dots Selenium - chemistry Staphylococcus aureus |
title | Uniform Fluorescent Nanobioprobes for Pathogen Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20Fluorescent%20Nanobioprobes%20for%20Pathogen%20Detection&rft.jtitle=ACS%20nano&rft.au=Xiong,%20Ling-Hong&rft.date=2014-05-27&rft.volume=8&rft.issue=5&rft.spage=5116&rft.epage=5124&rft.pages=5116-5124&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn501174g&rft_dat=%3Cacs_pubme%3Ec922724126%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24779675&rfr_iscdi=true |