Fractures in Geriatric Mice Show Decreased Callus Expansion and Bone Volume

Background Poor fracture healing in geriatric populations is a significant source of morbidity, mortality, and cost to individuals and society; however, a fundamental biologic understanding of age-dependent healing remains elusive. The development of an aged-based fracture model system would allow f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical orthopaedics and related research 2014-11, Vol.472 (11), p.3523-3532
Hauptverfasser: Lopas, Luke A., Belkin, Nicole S., Mutyaba, Patricia L., Gray, Chancellor F., Hankenson, Kurt D., Ahn, Jaimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3532
container_issue 11
container_start_page 3523
container_title Clinical orthopaedics and related research
container_volume 472
creator Lopas, Luke A.
Belkin, Nicole S.
Mutyaba, Patricia L.
Gray, Chancellor F.
Hankenson, Kurt D.
Ahn, Jaimo
description Background Poor fracture healing in geriatric populations is a significant source of morbidity, mortality, and cost to individuals and society; however, a fundamental biologic understanding of age-dependent healing remains elusive. The development of an aged-based fracture model system would allow for a mechanistic understanding that could guide future biologic treatments. Questions/purposes Using a small animal model of long-bone fracture healing based on chronologic age, we asked how aging affected (1) the amount, density, and proportion of bone formed during healing; (2) the amount of cartilage produced and the progression to bone during healing; (3) the callus structure and timing of the fracture healing; and (4) the behavior of progenitor cells relative to the observed deficiencies of geriatric fracture healing. Methods Transverse, traumatic tibial diaphyseal fractures were created in 5-month-old (n = 104; young adult) and 25-month-old (n = 107; which we defined as geriatric, and are approximately equivalent to 70–85 year-old humans) C57BL/6 mice. Fracture calluses were harvested at seven times from 0 to 40 days postfracture for micro-CT analysis (total volume, bone volume, bone volume fraction, connectivity density, structure model index, trabecular number, trabecular thickness, trabecular spacing, total mineral content, bone mineral content, tissue mineral density, bone mineral density, degree of anisotropy, and polar moment of inertia), histomorphometry (total callus area, cartilage area, percent of cartilage, hypertrophic cartilage area, percent of hypertrophic cartilage area, bone and osteoid area, percent of bone and osteoid area), and gene expression quantification (fold change). Results The geriatric mice produced a less robust healing response characterized by a pronounced decrease in callus amount (mean total volume at 20 days postfracture, 30.08 ± 11.53 mm 3 versus 43.19 ± 18.39 mm 3 ; p = 0.009), density (mean bone mineral density at 20 days postfracture, 171.14 ± 64.20 mg hydroxyapatite [HA]/cm 3 versus 210.79 ± 37.60 mg HA/cm 3 ; p = 0.016), and less total cartilage (mean cartilage area at 10 days postfracture, 101,279 ± 46,755 square pixels versus 302,167 ± 137,806 square pixels; p = 0.013) and bone content (mean bone volume at 20 days postfracture, 11.68 ± 3.18 mm 3 versus 22.34 ± 10.59 mm 3 ; p 
doi_str_mv 10.1007/s11999-014-3829-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4182401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1622606626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-eb26da703513818a0f636caf766302addf48f58658b4402a4514cda66b1d6a493</originalsourceid><addsrcrecordid>eNqFkU1vFSEUhomxsdfqD3BjSNy4Gcvh4wxsTPTa1sYaF37EHeEyTDvNXLiFGb3-e2lu21QT44rAec7LgYeQZ8BeAWPtYQEwxjQMZCM0N832AVmA4roBEPwhWTDGTGM4fN8nj0u5rFshFX9E9rkChq1pF-TDcXZ-mnModIj0JOTBTXnw9OPgA_18kX7Sd8Hn4Ero6NKN41zo0XbjYhlSpC529G2KgX5L47wOT8he78YSnt6sB-Tr8dGX5fvm7NPJ6fLNWeNVK6YmrDh2rmVCgdCgHetRoHd9iygYd13XS90rjUqvpKwHUoH0nUNcQYdOGnFAXu9yN_NqHTof4pTdaDd5WLv8yyY32D8rcbiw5-mHlaC5ZFADXt4E5HQ1hzLZ9VB8GEcXQ5qLBeQcGSLH_6N1UGaQKV7RF3-hl2nOsf5EpRBbYRTTlYId5XMqJYf-bm5g9tqq3Vm11aq9tmq3tef5_QffddxqrADfAaWW4nnI967-Z-pvWdqsig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566739508</pqid></control><display><type>article</type><title>Fractures in Geriatric Mice Show Decreased Callus Expansion and Bone Volume</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lopas, Luke A. ; Belkin, Nicole S. ; Mutyaba, Patricia L. ; Gray, Chancellor F. ; Hankenson, Kurt D. ; Ahn, Jaimo</creator><creatorcontrib>Lopas, Luke A. ; Belkin, Nicole S. ; Mutyaba, Patricia L. ; Gray, Chancellor F. ; Hankenson, Kurt D. ; Ahn, Jaimo</creatorcontrib><description>Background Poor fracture healing in geriatric populations is a significant source of morbidity, mortality, and cost to individuals and society; however, a fundamental biologic understanding of age-dependent healing remains elusive. The development of an aged-based fracture model system would allow for a mechanistic understanding that could guide future biologic treatments. Questions/purposes Using a small animal model of long-bone fracture healing based on chronologic age, we asked how aging affected (1) the amount, density, and proportion of bone formed during healing; (2) the amount of cartilage produced and the progression to bone during healing; (3) the callus structure and timing of the fracture healing; and (4) the behavior of progenitor cells relative to the observed deficiencies of geriatric fracture healing. Methods Transverse, traumatic tibial diaphyseal fractures were created in 5-month-old (n = 104; young adult) and 25-month-old (n = 107; which we defined as geriatric, and are approximately equivalent to 70–85 year-old humans) C57BL/6 mice. Fracture calluses were harvested at seven times from 0 to 40 days postfracture for micro-CT analysis (total volume, bone volume, bone volume fraction, connectivity density, structure model index, trabecular number, trabecular thickness, trabecular spacing, total mineral content, bone mineral content, tissue mineral density, bone mineral density, degree of anisotropy, and polar moment of inertia), histomorphometry (total callus area, cartilage area, percent of cartilage, hypertrophic cartilage area, percent of hypertrophic cartilage area, bone and osteoid area, percent of bone and osteoid area), and gene expression quantification (fold change). Results The geriatric mice produced a less robust healing response characterized by a pronounced decrease in callus amount (mean total volume at 20 days postfracture, 30.08 ± 11.53 mm 3 versus 43.19 ± 18.39 mm 3 ; p = 0.009), density (mean bone mineral density at 20 days postfracture, 171.14 ± 64.20 mg hydroxyapatite [HA]/cm 3 versus 210.79 ± 37.60 mg HA/cm 3 ; p = 0.016), and less total cartilage (mean cartilage area at 10 days postfracture, 101,279 ± 46,755 square pixels versus 302,167 ± 137,806 square pixels; p = 0.013) and bone content (mean bone volume at 20 days postfracture, 11.68 ± 3.18 mm 3 versus 22.34 ± 10.59 mm 3 ; p &lt; 0.001) compared with the young adult mice. However, the amount of cartilage and bone relative to the total callus size was similar between the adult and geriatric mice (mean bone volume fraction at 25 days postfracture, 0.48 ± 0.10 versus 0.50 ± 0.13; p = 0.793), and the relative expression of chondrogenic (mean fold change in SOX9 at 10 days postfracture, 135 + 25 versus 90 ± 52; p = 0.221) and osteogenic genes (mean fold change in osterix at 20 days postfracture, 22.2 ± 5.3 versus 18.7 ± 5.2; p = 0.324) was similar. Analysis of mesenchymal cell proliferation in the geriatric mice relative to adult mice showed a decrease in proliferation (mean percent of undifferentiated mesenchymal cells staining proliferating cell nuclear antigen [PCNA] positive at 10 days postfracture, 25% ± 6.8% versus 42% ± 14.5%; p = 0.047). Conclusions Our findings suggest that the molecular program of fracture healing is intact in geriatric mice, as it is in geriatric humans, but callus expansion is reduced in magnitude. Clinical Relevance Our study showed altered healing capacity in a relevant animal model of geriatric fracture healing. The understanding that callus expansion and bone volume are decreased with aging can help guide the development of targeted therapeutics for these difficult to heal fractures.</description><identifier>ISSN: 0009-921X</identifier><identifier>EISSN: 1528-1132</identifier><identifier>DOI: 10.1007/s11999-014-3829-x</identifier><identifier>PMID: 25106797</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aging - pathology ; Aging - physiology ; Animals ; Basic Research ; Bone and Bones - diagnostic imaging ; Bone and Bones - pathology ; Bone Density - physiology ; Bony Callus - pathology ; Bony Callus - physiology ; Cartilage - physiology ; Conservative Orthopedics ; Disease Models, Animal ; Fracture Healing - physiology ; Fractures, Bone - diagnostic imaging ; Fractures, Bone - pathology ; Fractures, Bone - physiopathology ; Humans ; Imaging, Three-Dimensional ; Male ; Medicine ; Medicine &amp; Public Health ; Mice ; Mice, Inbred C57BL ; Organ Size ; Orthopedics ; Sports Medicine ; Stem Cells - pathology ; Stem Cells - physiology ; Surgery ; Surgical Orthopedics ; X-Ray Microtomography</subject><ispartof>Clinical orthopaedics and related research, 2014-11, Vol.472 (11), p.3523-3532</ispartof><rights>The Association of Bone and Joint Surgeons® 2014</rights><rights>The Association of Bone and Joint Surgeons 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-eb26da703513818a0f636caf766302addf48f58658b4402a4514cda66b1d6a493</citedby><cites>FETCH-LOGICAL-c573t-eb26da703513818a0f636caf766302addf48f58658b4402a4514cda66b1d6a493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4182401/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4182401/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25106797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopas, Luke A.</creatorcontrib><creatorcontrib>Belkin, Nicole S.</creatorcontrib><creatorcontrib>Mutyaba, Patricia L.</creatorcontrib><creatorcontrib>Gray, Chancellor F.</creatorcontrib><creatorcontrib>Hankenson, Kurt D.</creatorcontrib><creatorcontrib>Ahn, Jaimo</creatorcontrib><title>Fractures in Geriatric Mice Show Decreased Callus Expansion and Bone Volume</title><title>Clinical orthopaedics and related research</title><addtitle>Clin Orthop Relat Res</addtitle><addtitle>Clin Orthop Relat Res</addtitle><description>Background Poor fracture healing in geriatric populations is a significant source of morbidity, mortality, and cost to individuals and society; however, a fundamental biologic understanding of age-dependent healing remains elusive. The development of an aged-based fracture model system would allow for a mechanistic understanding that could guide future biologic treatments. Questions/purposes Using a small animal model of long-bone fracture healing based on chronologic age, we asked how aging affected (1) the amount, density, and proportion of bone formed during healing; (2) the amount of cartilage produced and the progression to bone during healing; (3) the callus structure and timing of the fracture healing; and (4) the behavior of progenitor cells relative to the observed deficiencies of geriatric fracture healing. Methods Transverse, traumatic tibial diaphyseal fractures were created in 5-month-old (n = 104; young adult) and 25-month-old (n = 107; which we defined as geriatric, and are approximately equivalent to 70–85 year-old humans) C57BL/6 mice. Fracture calluses were harvested at seven times from 0 to 40 days postfracture for micro-CT analysis (total volume, bone volume, bone volume fraction, connectivity density, structure model index, trabecular number, trabecular thickness, trabecular spacing, total mineral content, bone mineral content, tissue mineral density, bone mineral density, degree of anisotropy, and polar moment of inertia), histomorphometry (total callus area, cartilage area, percent of cartilage, hypertrophic cartilage area, percent of hypertrophic cartilage area, bone and osteoid area, percent of bone and osteoid area), and gene expression quantification (fold change). Results The geriatric mice produced a less robust healing response characterized by a pronounced decrease in callus amount (mean total volume at 20 days postfracture, 30.08 ± 11.53 mm 3 versus 43.19 ± 18.39 mm 3 ; p = 0.009), density (mean bone mineral density at 20 days postfracture, 171.14 ± 64.20 mg hydroxyapatite [HA]/cm 3 versus 210.79 ± 37.60 mg HA/cm 3 ; p = 0.016), and less total cartilage (mean cartilage area at 10 days postfracture, 101,279 ± 46,755 square pixels versus 302,167 ± 137,806 square pixels; p = 0.013) and bone content (mean bone volume at 20 days postfracture, 11.68 ± 3.18 mm 3 versus 22.34 ± 10.59 mm 3 ; p &lt; 0.001) compared with the young adult mice. However, the amount of cartilage and bone relative to the total callus size was similar between the adult and geriatric mice (mean bone volume fraction at 25 days postfracture, 0.48 ± 0.10 versus 0.50 ± 0.13; p = 0.793), and the relative expression of chondrogenic (mean fold change in SOX9 at 10 days postfracture, 135 + 25 versus 90 ± 52; p = 0.221) and osteogenic genes (mean fold change in osterix at 20 days postfracture, 22.2 ± 5.3 versus 18.7 ± 5.2; p = 0.324) was similar. Analysis of mesenchymal cell proliferation in the geriatric mice relative to adult mice showed a decrease in proliferation (mean percent of undifferentiated mesenchymal cells staining proliferating cell nuclear antigen [PCNA] positive at 10 days postfracture, 25% ± 6.8% versus 42% ± 14.5%; p = 0.047). Conclusions Our findings suggest that the molecular program of fracture healing is intact in geriatric mice, as it is in geriatric humans, but callus expansion is reduced in magnitude. Clinical Relevance Our study showed altered healing capacity in a relevant animal model of geriatric fracture healing. The understanding that callus expansion and bone volume are decreased with aging can help guide the development of targeted therapeutics for these difficult to heal fractures.</description><subject>Aging - pathology</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>Basic Research</subject><subject>Bone and Bones - diagnostic imaging</subject><subject>Bone and Bones - pathology</subject><subject>Bone Density - physiology</subject><subject>Bony Callus - pathology</subject><subject>Bony Callus - physiology</subject><subject>Cartilage - physiology</subject><subject>Conservative Orthopedics</subject><subject>Disease Models, Animal</subject><subject>Fracture Healing - physiology</subject><subject>Fractures, Bone - diagnostic imaging</subject><subject>Fractures, Bone - pathology</subject><subject>Fractures, Bone - physiopathology</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Organ Size</subject><subject>Orthopedics</subject><subject>Sports Medicine</subject><subject>Stem Cells - pathology</subject><subject>Stem Cells - physiology</subject><subject>Surgery</subject><subject>Surgical Orthopedics</subject><subject>X-Ray Microtomography</subject><issn>0009-921X</issn><issn>1528-1132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU1vFSEUhomxsdfqD3BjSNy4Gcvh4wxsTPTa1sYaF37EHeEyTDvNXLiFGb3-e2lu21QT44rAec7LgYeQZ8BeAWPtYQEwxjQMZCM0N832AVmA4roBEPwhWTDGTGM4fN8nj0u5rFshFX9E9rkChq1pF-TDcXZ-mnModIj0JOTBTXnw9OPgA_18kX7Sd8Hn4Ero6NKN41zo0XbjYhlSpC529G2KgX5L47wOT8he78YSnt6sB-Tr8dGX5fvm7NPJ6fLNWeNVK6YmrDh2rmVCgdCgHetRoHd9iygYd13XS90rjUqvpKwHUoH0nUNcQYdOGnFAXu9yN_NqHTof4pTdaDd5WLv8yyY32D8rcbiw5-mHlaC5ZFADXt4E5HQ1hzLZ9VB8GEcXQ5qLBeQcGSLH_6N1UGaQKV7RF3-hl2nOsf5EpRBbYRTTlYId5XMqJYf-bm5g9tqq3Vm11aq9tmq3tef5_QffddxqrADfAaWW4nnI967-Z-pvWdqsig</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Lopas, Luke A.</creator><creator>Belkin, Nicole S.</creator><creator>Mutyaba, Patricia L.</creator><creator>Gray, Chancellor F.</creator><creator>Hankenson, Kurt D.</creator><creator>Ahn, Jaimo</creator><general>Springer US</general><general>Lippincott Williams &amp; Wilkins Ovid Technologies</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141101</creationdate><title>Fractures in Geriatric Mice Show Decreased Callus Expansion and Bone Volume</title><author>Lopas, Luke A. ; Belkin, Nicole S. ; Mutyaba, Patricia L. ; Gray, Chancellor F. ; Hankenson, Kurt D. ; Ahn, Jaimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-eb26da703513818a0f636caf766302addf48f58658b4402a4514cda66b1d6a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aging - pathology</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>Basic Research</topic><topic>Bone and Bones - diagnostic imaging</topic><topic>Bone and Bones - pathology</topic><topic>Bone Density - physiology</topic><topic>Bony Callus - pathology</topic><topic>Bony Callus - physiology</topic><topic>Cartilage - physiology</topic><topic>Conservative Orthopedics</topic><topic>Disease Models, Animal</topic><topic>Fracture Healing - physiology</topic><topic>Fractures, Bone - diagnostic imaging</topic><topic>Fractures, Bone - pathology</topic><topic>Fractures, Bone - physiopathology</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Organ Size</topic><topic>Orthopedics</topic><topic>Sports Medicine</topic><topic>Stem Cells - pathology</topic><topic>Stem Cells - physiology</topic><topic>Surgery</topic><topic>Surgical Orthopedics</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopas, Luke A.</creatorcontrib><creatorcontrib>Belkin, Nicole S.</creatorcontrib><creatorcontrib>Mutyaba, Patricia L.</creatorcontrib><creatorcontrib>Gray, Chancellor F.</creatorcontrib><creatorcontrib>Hankenson, Kurt D.</creatorcontrib><creatorcontrib>Ahn, Jaimo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical orthopaedics and related research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopas, Luke A.</au><au>Belkin, Nicole S.</au><au>Mutyaba, Patricia L.</au><au>Gray, Chancellor F.</au><au>Hankenson, Kurt D.</au><au>Ahn, Jaimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractures in Geriatric Mice Show Decreased Callus Expansion and Bone Volume</atitle><jtitle>Clinical orthopaedics and related research</jtitle><stitle>Clin Orthop Relat Res</stitle><addtitle>Clin Orthop Relat Res</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>472</volume><issue>11</issue><spage>3523</spage><epage>3532</epage><pages>3523-3532</pages><issn>0009-921X</issn><eissn>1528-1132</eissn><abstract>Background Poor fracture healing in geriatric populations is a significant source of morbidity, mortality, and cost to individuals and society; however, a fundamental biologic understanding of age-dependent healing remains elusive. The development of an aged-based fracture model system would allow for a mechanistic understanding that could guide future biologic treatments. Questions/purposes Using a small animal model of long-bone fracture healing based on chronologic age, we asked how aging affected (1) the amount, density, and proportion of bone formed during healing; (2) the amount of cartilage produced and the progression to bone during healing; (3) the callus structure and timing of the fracture healing; and (4) the behavior of progenitor cells relative to the observed deficiencies of geriatric fracture healing. Methods Transverse, traumatic tibial diaphyseal fractures were created in 5-month-old (n = 104; young adult) and 25-month-old (n = 107; which we defined as geriatric, and are approximately equivalent to 70–85 year-old humans) C57BL/6 mice. Fracture calluses were harvested at seven times from 0 to 40 days postfracture for micro-CT analysis (total volume, bone volume, bone volume fraction, connectivity density, structure model index, trabecular number, trabecular thickness, trabecular spacing, total mineral content, bone mineral content, tissue mineral density, bone mineral density, degree of anisotropy, and polar moment of inertia), histomorphometry (total callus area, cartilage area, percent of cartilage, hypertrophic cartilage area, percent of hypertrophic cartilage area, bone and osteoid area, percent of bone and osteoid area), and gene expression quantification (fold change). Results The geriatric mice produced a less robust healing response characterized by a pronounced decrease in callus amount (mean total volume at 20 days postfracture, 30.08 ± 11.53 mm 3 versus 43.19 ± 18.39 mm 3 ; p = 0.009), density (mean bone mineral density at 20 days postfracture, 171.14 ± 64.20 mg hydroxyapatite [HA]/cm 3 versus 210.79 ± 37.60 mg HA/cm 3 ; p = 0.016), and less total cartilage (mean cartilage area at 10 days postfracture, 101,279 ± 46,755 square pixels versus 302,167 ± 137,806 square pixels; p = 0.013) and bone content (mean bone volume at 20 days postfracture, 11.68 ± 3.18 mm 3 versus 22.34 ± 10.59 mm 3 ; p &lt; 0.001) compared with the young adult mice. However, the amount of cartilage and bone relative to the total callus size was similar between the adult and geriatric mice (mean bone volume fraction at 25 days postfracture, 0.48 ± 0.10 versus 0.50 ± 0.13; p = 0.793), and the relative expression of chondrogenic (mean fold change in SOX9 at 10 days postfracture, 135 + 25 versus 90 ± 52; p = 0.221) and osteogenic genes (mean fold change in osterix at 20 days postfracture, 22.2 ± 5.3 versus 18.7 ± 5.2; p = 0.324) was similar. Analysis of mesenchymal cell proliferation in the geriatric mice relative to adult mice showed a decrease in proliferation (mean percent of undifferentiated mesenchymal cells staining proliferating cell nuclear antigen [PCNA] positive at 10 days postfracture, 25% ± 6.8% versus 42% ± 14.5%; p = 0.047). Conclusions Our findings suggest that the molecular program of fracture healing is intact in geriatric mice, as it is in geriatric humans, but callus expansion is reduced in magnitude. Clinical Relevance Our study showed altered healing capacity in a relevant animal model of geriatric fracture healing. The understanding that callus expansion and bone volume are decreased with aging can help guide the development of targeted therapeutics for these difficult to heal fractures.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>25106797</pmid><doi>10.1007/s11999-014-3829-x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-921X
ispartof Clinical orthopaedics and related research, 2014-11, Vol.472 (11), p.3523-3532
issn 0009-921X
1528-1132
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4182401
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Aging - pathology
Aging - physiology
Animals
Basic Research
Bone and Bones - diagnostic imaging
Bone and Bones - pathology
Bone Density - physiology
Bony Callus - pathology
Bony Callus - physiology
Cartilage - physiology
Conservative Orthopedics
Disease Models, Animal
Fracture Healing - physiology
Fractures, Bone - diagnostic imaging
Fractures, Bone - pathology
Fractures, Bone - physiopathology
Humans
Imaging, Three-Dimensional
Male
Medicine
Medicine & Public Health
Mice
Mice, Inbred C57BL
Organ Size
Orthopedics
Sports Medicine
Stem Cells - pathology
Stem Cells - physiology
Surgery
Surgical Orthopedics
X-Ray Microtomography
title Fractures in Geriatric Mice Show Decreased Callus Expansion and Bone Volume
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractures%20in%20Geriatric%20Mice%20Show%20Decreased%20Callus%20Expansion%20and%20Bone%20Volume&rft.jtitle=Clinical%20orthopaedics%20and%20related%20research&rft.au=Lopas,%20Luke%20A.&rft.date=2014-11-01&rft.volume=472&rft.issue=11&rft.spage=3523&rft.epage=3532&rft.pages=3523-3532&rft.issn=0009-921X&rft.eissn=1528-1132&rft_id=info:doi/10.1007/s11999-014-3829-x&rft_dat=%3Cproquest_pubme%3E1622606626%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566739508&rft_id=info:pmid/25106797&rfr_iscdi=true