G9a co-suppresses LINE1 elements in spermatogonia
Repression of retrotransposons is essential for genome integrity and the development of germ cells. Among retrotransposons, the establishment of CpG DNA methylation and epigenetic silencing of LINE1 (L1) elements and the intracisternal A particle (IAP) endogenous retrovirus (ERV) is dependent upon t...
Gespeichert in:
Veröffentlicht in: | Epigenetics & chromatin 2014-09, Vol.7 (1), p.24-24, Article 24 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 24 |
container_title | Epigenetics & chromatin |
container_volume | 7 |
creator | Di Giacomo, Monica Comazzetto, Stefano Sampath, Srihari C Sampath, Srinath C O'Carroll, Dónal |
description | Repression of retrotransposons is essential for genome integrity and the development of germ cells. Among retrotransposons, the establishment of CpG DNA methylation and epigenetic silencing of LINE1 (L1) elements and the intracisternal A particle (IAP) endogenous retrovirus (ERV) is dependent upon the piRNA pathway during embryonic germ cell reprogramming. Furthermore, the Piwi protein Mili, guided by piRNAs, cleaves expressed L1 transcripts to post-transcriptionally enforce L1 silencing in meiotic cells. The loss of both DNA methylation and the Mili piRNA pathway does not affect L1 silencing in the mitotic spermatogonia where histone H3 lysine 9 dimethylation (H3K9me2) is postulated to co-repress these elements.
Here we show that the histone H3 lysine 9 dimethyltransferase G9a co-suppresses L1 elements in spermatogonia. In the absence of both a functional piRNA pathway and L1 DNA methylation, G9a is both essential and sufficient to silence L1 elements. In contrast, H3K9me2 alone is insufficient to maintain IAP silencing in spermatogonia. The loss of all three repressive mechanisms has a major impact on spermatogonial populations inclusive of spermatogonial stem cells, with the loss of all germ cells observed in a high portion of seminiferous tubules.
Our study identifies G9a-mediated H3K9me2 as a novel and important L1 repressive mechanism in the germ line. We also demonstrate fundamental differences in the requirements for the maintenance of L1 and IAP silencing during adult spermatogenesis, where H3K9me2 is sufficient to maintain L1 but not IAP silencing. Finally, we demonstrate that repression of retrotransposon activation in spermatogonia is important for the survival of this population and testicular homeostasis. |
doi_str_mv | 10.1186/1756-8935-7-24 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4177377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A540692853</galeid><sourcerecordid>A540692853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-cf48fa56848e827d14f0db8277b7a7fe545e4dd383ec89cec4d89f1a36d166f83</originalsourceid><addsrcrecordid>eNqFkt1rFDEUxYMobV376qMM9EUfps13Mi-FUmpdWBSqPods5mZNmZlMk5mi_71ZrGu3FCSBXG5-9yQcDkJvCT4lRMszooSsdcNErWrKX6CjXePlo_oQvc75FmNJNccH6JAKqiRl5AiR68ZWLtZ5HscEOUOuVsvPV6SCDnoYplyFocojpN5OcROHYN-gV952GY4fzgX6_vHq2-WnevXlenl5saqdEHSqnefaWyE116Cpagn3uF2XSq2VVR4EF8DblmkGTjcOHG9144llsiVSes0W6PyP7jive2hd-UyynRlT6G36ZaINZv9mCD_MJt4bTpRiZS_Q-weBFO9myJPpQ3bQdXaAOGdDJCGSFhfF_1GhJcFMYVzQkyfobZzTUJwolBRCNZzof9TGdmDC4GP5otuKmgvBsWxoebVQp89QZbXQBxcH8KH09wY-7A0UZoKf08bOOZvl15tnxV2KOSfwO-sINtvsmG08zDYeRhnKy8C7x4bv8L9hYb8Biha6yQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565579418</pqid></control><display><type>article</type><title>G9a co-suppresses LINE1 elements in spermatogonia</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Di Giacomo, Monica ; Comazzetto, Stefano ; Sampath, Srihari C ; Sampath, Srinath C ; O'Carroll, Dónal</creator><creatorcontrib>Di Giacomo, Monica ; Comazzetto, Stefano ; Sampath, Srihari C ; Sampath, Srinath C ; O'Carroll, Dónal</creatorcontrib><description>Repression of retrotransposons is essential for genome integrity and the development of germ cells. Among retrotransposons, the establishment of CpG DNA methylation and epigenetic silencing of LINE1 (L1) elements and the intracisternal A particle (IAP) endogenous retrovirus (ERV) is dependent upon the piRNA pathway during embryonic germ cell reprogramming. Furthermore, the Piwi protein Mili, guided by piRNAs, cleaves expressed L1 transcripts to post-transcriptionally enforce L1 silencing in meiotic cells. The loss of both DNA methylation and the Mili piRNA pathway does not affect L1 silencing in the mitotic spermatogonia where histone H3 lysine 9 dimethylation (H3K9me2) is postulated to co-repress these elements.
Here we show that the histone H3 lysine 9 dimethyltransferase G9a co-suppresses L1 elements in spermatogonia. In the absence of both a functional piRNA pathway and L1 DNA methylation, G9a is both essential and sufficient to silence L1 elements. In contrast, H3K9me2 alone is insufficient to maintain IAP silencing in spermatogonia. The loss of all three repressive mechanisms has a major impact on spermatogonial populations inclusive of spermatogonial stem cells, with the loss of all germ cells observed in a high portion of seminiferous tubules.
Our study identifies G9a-mediated H3K9me2 as a novel and important L1 repressive mechanism in the germ line. We also demonstrate fundamental differences in the requirements for the maintenance of L1 and IAP silencing during adult spermatogenesis, where H3K9me2 is sufficient to maintain L1 but not IAP silencing. Finally, we demonstrate that repression of retrotransposon activation in spermatogonia is important for the survival of this population and testicular homeostasis.</description><identifier>ISSN: 1756-8935</identifier><identifier>EISSN: 1756-8935</identifier><identifier>DOI: 10.1186/1756-8935-7-24</identifier><identifier>PMID: 25276231</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Deoxyribonucleic acid ; DNA ; DNA methylation ; Experiments ; Genetic aspects ; Genetic transcription ; Histology ; Lysine ; Rodents ; Spermatogenesis ; Transposons</subject><ispartof>Epigenetics & chromatin, 2014-09, Vol.7 (1), p.24-24, Article 24</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>2014 Di Giacomo et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>Copyright © 2014 Di Giacomo et al.; licensee BioMed Central Ltd. 2014 Di Giacomo et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-cf48fa56848e827d14f0db8277b7a7fe545e4dd383ec89cec4d89f1a36d166f83</citedby><cites>FETCH-LOGICAL-c552t-cf48fa56848e827d14f0db8277b7a7fe545e4dd383ec89cec4d89f1a36d166f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177377/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177377/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25276231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Giacomo, Monica</creatorcontrib><creatorcontrib>Comazzetto, Stefano</creatorcontrib><creatorcontrib>Sampath, Srihari C</creatorcontrib><creatorcontrib>Sampath, Srinath C</creatorcontrib><creatorcontrib>O'Carroll, Dónal</creatorcontrib><title>G9a co-suppresses LINE1 elements in spermatogonia</title><title>Epigenetics & chromatin</title><addtitle>Epigenetics Chromatin</addtitle><description>Repression of retrotransposons is essential for genome integrity and the development of germ cells. Among retrotransposons, the establishment of CpG DNA methylation and epigenetic silencing of LINE1 (L1) elements and the intracisternal A particle (IAP) endogenous retrovirus (ERV) is dependent upon the piRNA pathway during embryonic germ cell reprogramming. Furthermore, the Piwi protein Mili, guided by piRNAs, cleaves expressed L1 transcripts to post-transcriptionally enforce L1 silencing in meiotic cells. The loss of both DNA methylation and the Mili piRNA pathway does not affect L1 silencing in the mitotic spermatogonia where histone H3 lysine 9 dimethylation (H3K9me2) is postulated to co-repress these elements.
Here we show that the histone H3 lysine 9 dimethyltransferase G9a co-suppresses L1 elements in spermatogonia. In the absence of both a functional piRNA pathway and L1 DNA methylation, G9a is both essential and sufficient to silence L1 elements. In contrast, H3K9me2 alone is insufficient to maintain IAP silencing in spermatogonia. The loss of all three repressive mechanisms has a major impact on spermatogonial populations inclusive of spermatogonial stem cells, with the loss of all germ cells observed in a high portion of seminiferous tubules.
Our study identifies G9a-mediated H3K9me2 as a novel and important L1 repressive mechanism in the germ line. We also demonstrate fundamental differences in the requirements for the maintenance of L1 and IAP silencing during adult spermatogenesis, where H3K9me2 is sufficient to maintain L1 but not IAP silencing. Finally, we demonstrate that repression of retrotransposon activation in spermatogonia is important for the survival of this population and testicular homeostasis.</description><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Experiments</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Histology</subject><subject>Lysine</subject><subject>Rodents</subject><subject>Spermatogenesis</subject><subject>Transposons</subject><issn>1756-8935</issn><issn>1756-8935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkt1rFDEUxYMobV376qMM9EUfps13Mi-FUmpdWBSqPods5mZNmZlMk5mi_71ZrGu3FCSBXG5-9yQcDkJvCT4lRMszooSsdcNErWrKX6CjXePlo_oQvc75FmNJNccH6JAKqiRl5AiR68ZWLtZ5HscEOUOuVsvPV6SCDnoYplyFocojpN5OcROHYN-gV952GY4fzgX6_vHq2-WnevXlenl5saqdEHSqnefaWyE116Cpagn3uF2XSq2VVR4EF8DblmkGTjcOHG9144llsiVSes0W6PyP7jive2hd-UyynRlT6G36ZaINZv9mCD_MJt4bTpRiZS_Q-weBFO9myJPpQ3bQdXaAOGdDJCGSFhfF_1GhJcFMYVzQkyfobZzTUJwolBRCNZzof9TGdmDC4GP5otuKmgvBsWxoebVQp89QZbXQBxcH8KH09wY-7A0UZoKf08bOOZvl15tnxV2KOSfwO-sINtvsmG08zDYeRhnKy8C7x4bv8L9hYb8Biha6yQ</recordid><startdate>20140911</startdate><enddate>20140911</enddate><creator>Di Giacomo, Monica</creator><creator>Comazzetto, Stefano</creator><creator>Sampath, Srihari C</creator><creator>Sampath, Srinath C</creator><creator>O'Carroll, Dónal</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140911</creationdate><title>G9a co-suppresses LINE1 elements in spermatogonia</title><author>Di Giacomo, Monica ; Comazzetto, Stefano ; Sampath, Srihari C ; Sampath, Srinath C ; O'Carroll, Dónal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-cf48fa56848e827d14f0db8277b7a7fe545e4dd383ec89cec4d89f1a36d166f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Experiments</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Histology</topic><topic>Lysine</topic><topic>Rodents</topic><topic>Spermatogenesis</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Giacomo, Monica</creatorcontrib><creatorcontrib>Comazzetto, Stefano</creatorcontrib><creatorcontrib>Sampath, Srihari C</creatorcontrib><creatorcontrib>Sampath, Srinath C</creatorcontrib><creatorcontrib>O'Carroll, Dónal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Epigenetics & chromatin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Giacomo, Monica</au><au>Comazzetto, Stefano</au><au>Sampath, Srihari C</au><au>Sampath, Srinath C</au><au>O'Carroll, Dónal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>G9a co-suppresses LINE1 elements in spermatogonia</atitle><jtitle>Epigenetics & chromatin</jtitle><addtitle>Epigenetics Chromatin</addtitle><date>2014-09-11</date><risdate>2014</risdate><volume>7</volume><issue>1</issue><spage>24</spage><epage>24</epage><pages>24-24</pages><artnum>24</artnum><issn>1756-8935</issn><eissn>1756-8935</eissn><abstract>Repression of retrotransposons is essential for genome integrity and the development of germ cells. Among retrotransposons, the establishment of CpG DNA methylation and epigenetic silencing of LINE1 (L1) elements and the intracisternal A particle (IAP) endogenous retrovirus (ERV) is dependent upon the piRNA pathway during embryonic germ cell reprogramming. Furthermore, the Piwi protein Mili, guided by piRNAs, cleaves expressed L1 transcripts to post-transcriptionally enforce L1 silencing in meiotic cells. The loss of both DNA methylation and the Mili piRNA pathway does not affect L1 silencing in the mitotic spermatogonia where histone H3 lysine 9 dimethylation (H3K9me2) is postulated to co-repress these elements.
Here we show that the histone H3 lysine 9 dimethyltransferase G9a co-suppresses L1 elements in spermatogonia. In the absence of both a functional piRNA pathway and L1 DNA methylation, G9a is both essential and sufficient to silence L1 elements. In contrast, H3K9me2 alone is insufficient to maintain IAP silencing in spermatogonia. The loss of all three repressive mechanisms has a major impact on spermatogonial populations inclusive of spermatogonial stem cells, with the loss of all germ cells observed in a high portion of seminiferous tubules.
Our study identifies G9a-mediated H3K9me2 as a novel and important L1 repressive mechanism in the germ line. We also demonstrate fundamental differences in the requirements for the maintenance of L1 and IAP silencing during adult spermatogenesis, where H3K9me2 is sufficient to maintain L1 but not IAP silencing. Finally, we demonstrate that repression of retrotransposon activation in spermatogonia is important for the survival of this population and testicular homeostasis.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>25276231</pmid><doi>10.1186/1756-8935-7-24</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1756-8935 |
ispartof | Epigenetics & chromatin, 2014-09, Vol.7 (1), p.24-24, Article 24 |
issn | 1756-8935 1756-8935 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4177377 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Deoxyribonucleic acid DNA DNA methylation Experiments Genetic aspects Genetic transcription Histology Lysine Rodents Spermatogenesis Transposons |
title | G9a co-suppresses LINE1 elements in spermatogonia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=G9a%20co-suppresses%20LINE1%20elements%20in%20spermatogonia&rft.jtitle=Epigenetics%20&%20chromatin&rft.au=Di%20Giacomo,%20Monica&rft.date=2014-09-11&rft.volume=7&rft.issue=1&rft.spage=24&rft.epage=24&rft.pages=24-24&rft.artnum=24&rft.issn=1756-8935&rft.eissn=1756-8935&rft_id=info:doi/10.1186/1756-8935-7-24&rft_dat=%3Cgale_pubme%3EA540692853%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1565579418&rft_id=info:pmid/25276231&rft_galeid=A540692853&rfr_iscdi=true |