Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction

Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2014-09, Vol.42 (16), p.10731-10747
Hauptverfasser: Rothé, Benjamin, Saliou, Jean-Michel, Quinternet, Marc, Back, Régis, Tiotiu, Decebal, Jacquemin, Clémence, Loegler, Christine, Schlotter, Florence, Peña, Vlad, Eckert, Kelvin, Moréra, Solange, Dorsselaer, Alain Van, Branlant, Christiane, Massenet, Séverine, Sanglier-Cianférani, Sarah, Manival, Xavier, Charpentier, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10747
container_issue 16
container_start_page 10731
container_title Nucleic acids research
container_volume 42
creator Rothé, Benjamin
Saliou, Jean-Michel
Quinternet, Marc
Back, Régis
Tiotiu, Decebal
Jacquemin, Clémence
Loegler, Christine
Schlotter, Florence
Peña, Vlad
Eckert, Kelvin
Moréra, Solange
Dorsselaer, Alain Van
Branlant, Christiane
Massenet, Séverine
Sanglier-Cianférani, Sarah
Manival, Xavier
Charpentier, Bruno
description Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer.
doi_str_mv 10.1093/nar/gku612
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4176330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808703306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-9d27601d3f2f6fb6a5f9ac63339341de1e6b4cd7dc8cfc462bb08284904ad4be3</originalsourceid><addsrcrecordid>eNqFks2O0zAUhS0EYsrAhgdAXgKaUP_FSTZIo_JTpApGI1hbjmO3BtcutlPRZ-ClcZQyAjasLB1_95xr6wDwFKNXGHV06WVcbr-NHJN7YIEpJxXrOLkPFoiiusKItRfgUUpfEcIM1-whuCA1bhBq6wX4eRND1tbDtc34Ckrow1E72IcfcLV8A5MPtx9voExJ73t3gkaqHOIVVMHnGFyCSjs3OhknRekiymyDh8HAvNMwKWlMcIP1W3g4B90miWF_goONWmVofdaxuJapx-CBkS7pJ-fzEnx59_bzal1tPr3_sLreVIqxOlfdQBqO8EANMdz0XNamk4pTSjvK8KCx5j1TQzOoVhnFOOl71JKWdYjJgfWaXoLXs-9h7Pd6mNd24hDtXsaTCNKKv2-83YltOAqGmxKDisGL2WD3z9j6eiMmDRHSdG2Hjriwz89hMXwfdcpib9P0a9LrMCaBW9Q2qLjy_6M1nzDCSEFfzqiKIaWozd0aGImpFKKUQsylKPCzP997h_5uAf0FDyO1QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1563063242</pqid></control><display><type>article</type><title>Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rothé, Benjamin ; Saliou, Jean-Michel ; Quinternet, Marc ; Back, Régis ; Tiotiu, Decebal ; Jacquemin, Clémence ; Loegler, Christine ; Schlotter, Florence ; Peña, Vlad ; Eckert, Kelvin ; Moréra, Solange ; Dorsselaer, Alain Van ; Branlant, Christiane ; Massenet, Séverine ; Sanglier-Cianférani, Sarah ; Manival, Xavier ; Charpentier, Bruno</creator><creatorcontrib>Rothé, Benjamin ; Saliou, Jean-Michel ; Quinternet, Marc ; Back, Régis ; Tiotiu, Decebal ; Jacquemin, Clémence ; Loegler, Christine ; Schlotter, Florence ; Peña, Vlad ; Eckert, Kelvin ; Moréra, Solange ; Dorsselaer, Alain Van ; Branlant, Christiane ; Massenet, Séverine ; Sanglier-Cianférani, Sarah ; Manival, Xavier ; Charpentier, Bruno</creatorcontrib><description>Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gku612</identifier><identifier>PMID: 25170085</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Biochemistry, Molecular Biology ; Humans ; Life Sciences ; Molecular biology ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Ribonucleoproteins, Small Nuclear - chemistry ; Ribonucleoproteins, Small Nuclear - genetics ; Ribonucleoproteins, Small Nuclear - metabolism ; Ribonucleoproteins, Small Nucleolar - chemistry ; Ribonucleoproteins, Small Nucleolar - genetics ; Ribonucleoproteins, Small Nucleolar - metabolism ; Ribosomal Proteins - chemistry ; Ribosomal Proteins - genetics ; Ribosomal Proteins - metabolism ; RNA 3' End Processing ; RNA, Small Nucleolar - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Structural Biology</subject><ispartof>Nucleic acids research, 2014-09, Vol.42 (16), p.10731-10747</ispartof><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-9d27601d3f2f6fb6a5f9ac63339341de1e6b4cd7dc8cfc462bb08284904ad4be3</citedby><cites>FETCH-LOGICAL-c445t-9d27601d3f2f6fb6a5f9ac63339341de1e6b4cd7dc8cfc462bb08284904ad4be3</cites><orcidid>0000-0002-7717-7096 ; 0000-0003-2955-2987 ; 0000-0003-4728-5499 ; 0000-0001-5187-8356 ; 0000-0002-8299-7136 ; 0000-0001-7781-0448 ; 0000-0003-4013-4129 ; 0000-0003-0105-5196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176330/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176330/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25170085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02279890$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rothé, Benjamin</creatorcontrib><creatorcontrib>Saliou, Jean-Michel</creatorcontrib><creatorcontrib>Quinternet, Marc</creatorcontrib><creatorcontrib>Back, Régis</creatorcontrib><creatorcontrib>Tiotiu, Decebal</creatorcontrib><creatorcontrib>Jacquemin, Clémence</creatorcontrib><creatorcontrib>Loegler, Christine</creatorcontrib><creatorcontrib>Schlotter, Florence</creatorcontrib><creatorcontrib>Peña, Vlad</creatorcontrib><creatorcontrib>Eckert, Kelvin</creatorcontrib><creatorcontrib>Moréra, Solange</creatorcontrib><creatorcontrib>Dorsselaer, Alain Van</creatorcontrib><creatorcontrib>Branlant, Christiane</creatorcontrib><creatorcontrib>Massenet, Séverine</creatorcontrib><creatorcontrib>Sanglier-Cianférani, Sarah</creatorcontrib><creatorcontrib>Manival, Xavier</creatorcontrib><creatorcontrib>Charpentier, Bruno</creatorcontrib><title>Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer.</description><subject>Biochemistry, Molecular Biology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Molecular biology</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Ribonucleoproteins, Small Nuclear - chemistry</subject><subject>Ribonucleoproteins, Small Nuclear - genetics</subject><subject>Ribonucleoproteins, Small Nuclear - metabolism</subject><subject>Ribonucleoproteins, Small Nucleolar - chemistry</subject><subject>Ribonucleoproteins, Small Nucleolar - genetics</subject><subject>Ribonucleoproteins, Small Nucleolar - metabolism</subject><subject>Ribosomal Proteins - chemistry</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosomal Proteins - metabolism</subject><subject>RNA 3' End Processing</subject><subject>RNA, Small Nucleolar - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Structural Biology</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks2O0zAUhS0EYsrAhgdAXgKaUP_FSTZIo_JTpApGI1hbjmO3BtcutlPRZ-ClcZQyAjasLB1_95xr6wDwFKNXGHV06WVcbr-NHJN7YIEpJxXrOLkPFoiiusKItRfgUUpfEcIM1-whuCA1bhBq6wX4eRND1tbDtc34Ckrow1E72IcfcLV8A5MPtx9voExJ73t3gkaqHOIVVMHnGFyCSjs3OhknRekiymyDh8HAvNMwKWlMcIP1W3g4B90miWF_goONWmVofdaxuJapx-CBkS7pJ-fzEnx59_bzal1tPr3_sLreVIqxOlfdQBqO8EANMdz0XNamk4pTSjvK8KCx5j1TQzOoVhnFOOl71JKWdYjJgfWaXoLXs-9h7Pd6mNd24hDtXsaTCNKKv2-83YltOAqGmxKDisGL2WD3z9j6eiMmDRHSdG2Hjriwz89hMXwfdcpib9P0a9LrMCaBW9Q2qLjy_6M1nzDCSEFfzqiKIaWozd0aGImpFKKUQsylKPCzP997h_5uAf0FDyO1QQ</recordid><startdate>20140915</startdate><enddate>20140915</enddate><creator>Rothé, Benjamin</creator><creator>Saliou, Jean-Michel</creator><creator>Quinternet, Marc</creator><creator>Back, Régis</creator><creator>Tiotiu, Decebal</creator><creator>Jacquemin, Clémence</creator><creator>Loegler, Christine</creator><creator>Schlotter, Florence</creator><creator>Peña, Vlad</creator><creator>Eckert, Kelvin</creator><creator>Moréra, Solange</creator><creator>Dorsselaer, Alain Van</creator><creator>Branlant, Christiane</creator><creator>Massenet, Séverine</creator><creator>Sanglier-Cianférani, Sarah</creator><creator>Manival, Xavier</creator><creator>Charpentier, Bruno</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7717-7096</orcidid><orcidid>https://orcid.org/0000-0003-2955-2987</orcidid><orcidid>https://orcid.org/0000-0003-4728-5499</orcidid><orcidid>https://orcid.org/0000-0001-5187-8356</orcidid><orcidid>https://orcid.org/0000-0002-8299-7136</orcidid><orcidid>https://orcid.org/0000-0001-7781-0448</orcidid><orcidid>https://orcid.org/0000-0003-4013-4129</orcidid><orcidid>https://orcid.org/0000-0003-0105-5196</orcidid></search><sort><creationdate>20140915</creationdate><title>Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction</title><author>Rothé, Benjamin ; Saliou, Jean-Michel ; Quinternet, Marc ; Back, Régis ; Tiotiu, Decebal ; Jacquemin, Clémence ; Loegler, Christine ; Schlotter, Florence ; Peña, Vlad ; Eckert, Kelvin ; Moréra, Solange ; Dorsselaer, Alain Van ; Branlant, Christiane ; Massenet, Séverine ; Sanglier-Cianférani, Sarah ; Manival, Xavier ; Charpentier, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-9d27601d3f2f6fb6a5f9ac63339341de1e6b4cd7dc8cfc462bb08284904ad4be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Molecular biology</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Ribonucleoproteins, Small Nuclear - chemistry</topic><topic>Ribonucleoproteins, Small Nuclear - genetics</topic><topic>Ribonucleoproteins, Small Nuclear - metabolism</topic><topic>Ribonucleoproteins, Small Nucleolar - chemistry</topic><topic>Ribonucleoproteins, Small Nucleolar - genetics</topic><topic>Ribonucleoproteins, Small Nucleolar - metabolism</topic><topic>Ribosomal Proteins - chemistry</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosomal Proteins - metabolism</topic><topic>RNA 3' End Processing</topic><topic>RNA, Small Nucleolar - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Structural Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rothé, Benjamin</creatorcontrib><creatorcontrib>Saliou, Jean-Michel</creatorcontrib><creatorcontrib>Quinternet, Marc</creatorcontrib><creatorcontrib>Back, Régis</creatorcontrib><creatorcontrib>Tiotiu, Decebal</creatorcontrib><creatorcontrib>Jacquemin, Clémence</creatorcontrib><creatorcontrib>Loegler, Christine</creatorcontrib><creatorcontrib>Schlotter, Florence</creatorcontrib><creatorcontrib>Peña, Vlad</creatorcontrib><creatorcontrib>Eckert, Kelvin</creatorcontrib><creatorcontrib>Moréra, Solange</creatorcontrib><creatorcontrib>Dorsselaer, Alain Van</creatorcontrib><creatorcontrib>Branlant, Christiane</creatorcontrib><creatorcontrib>Massenet, Séverine</creatorcontrib><creatorcontrib>Sanglier-Cianférani, Sarah</creatorcontrib><creatorcontrib>Manival, Xavier</creatorcontrib><creatorcontrib>Charpentier, Bruno</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rothé, Benjamin</au><au>Saliou, Jean-Michel</au><au>Quinternet, Marc</au><au>Back, Régis</au><au>Tiotiu, Decebal</au><au>Jacquemin, Clémence</au><au>Loegler, Christine</au><au>Schlotter, Florence</au><au>Peña, Vlad</au><au>Eckert, Kelvin</au><au>Moréra, Solange</au><au>Dorsselaer, Alain Van</au><au>Branlant, Christiane</au><au>Massenet, Séverine</au><au>Sanglier-Cianférani, Sarah</au><au>Manival, Xavier</au><au>Charpentier, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2014-09-15</date><risdate>2014</risdate><volume>42</volume><issue>16</issue><spage>10731</spage><epage>10747</epage><pages>10731-10747</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25170085</pmid><doi>10.1093/nar/gku612</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7717-7096</orcidid><orcidid>https://orcid.org/0000-0003-2955-2987</orcidid><orcidid>https://orcid.org/0000-0003-4728-5499</orcidid><orcidid>https://orcid.org/0000-0001-5187-8356</orcidid><orcidid>https://orcid.org/0000-0002-8299-7136</orcidid><orcidid>https://orcid.org/0000-0001-7781-0448</orcidid><orcidid>https://orcid.org/0000-0003-4013-4129</orcidid><orcidid>https://orcid.org/0000-0003-0105-5196</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2014-09, Vol.42 (16), p.10731-10747
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4176330
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Biochemistry, Molecular Biology
Humans
Life Sciences
Molecular biology
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Ribonucleoproteins, Small Nuclear - chemistry
Ribonucleoproteins, Small Nuclear - genetics
Ribonucleoproteins, Small Nuclear - metabolism
Ribonucleoproteins, Small Nucleolar - chemistry
Ribonucleoproteins, Small Nucleolar - genetics
Ribonucleoproteins, Small Nucleolar - metabolism
Ribosomal Proteins - chemistry
Ribosomal Proteins - genetics
Ribosomal Proteins - metabolism
RNA 3' End Processing
RNA, Small Nucleolar - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Structural Biology
title Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Hit1,%20a%20novel%20box%20C/D%20snoRNP%20assembly%20factor,%20controls%20cellular%20concentration%20of%20the%20scaffolding%20protein%20Rsa1%20by%20direct%20interaction&rft.jtitle=Nucleic%20acids%20research&rft.au=Roth%C3%A9,%20Benjamin&rft.date=2014-09-15&rft.volume=42&rft.issue=16&rft.spage=10731&rft.epage=10747&rft.pages=10731-10747&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gku612&rft_dat=%3Cproquest_pubme%3E1808703306%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1563063242&rft_id=info:pmid/25170085&rfr_iscdi=true