Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D s...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2014-09, Vol.42 (16), p.10731-10747 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10747 |
---|---|
container_issue | 16 |
container_start_page | 10731 |
container_title | Nucleic acids research |
container_volume | 42 |
creator | Rothé, Benjamin Saliou, Jean-Michel Quinternet, Marc Back, Régis Tiotiu, Decebal Jacquemin, Clémence Loegler, Christine Schlotter, Florence Peña, Vlad Eckert, Kelvin Moréra, Solange Dorsselaer, Alain Van Branlant, Christiane Massenet, Séverine Sanglier-Cianférani, Sarah Manival, Xavier Charpentier, Bruno |
description | Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer. |
doi_str_mv | 10.1093/nar/gku612 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4176330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808703306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-9d27601d3f2f6fb6a5f9ac63339341de1e6b4cd7dc8cfc462bb08284904ad4be3</originalsourceid><addsrcrecordid>eNqFks2O0zAUhS0EYsrAhgdAXgKaUP_FSTZIo_JTpApGI1hbjmO3BtcutlPRZ-ClcZQyAjasLB1_95xr6wDwFKNXGHV06WVcbr-NHJN7YIEpJxXrOLkPFoiiusKItRfgUUpfEcIM1-whuCA1bhBq6wX4eRND1tbDtc34Ckrow1E72IcfcLV8A5MPtx9voExJ73t3gkaqHOIVVMHnGFyCSjs3OhknRekiymyDh8HAvNMwKWlMcIP1W3g4B90miWF_goONWmVofdaxuJapx-CBkS7pJ-fzEnx59_bzal1tPr3_sLreVIqxOlfdQBqO8EANMdz0XNamk4pTSjvK8KCx5j1TQzOoVhnFOOl71JKWdYjJgfWaXoLXs-9h7Pd6mNd24hDtXsaTCNKKv2-83YltOAqGmxKDisGL2WD3z9j6eiMmDRHSdG2Hjriwz89hMXwfdcpib9P0a9LrMCaBW9Q2qLjy_6M1nzDCSEFfzqiKIaWozd0aGImpFKKUQsylKPCzP997h_5uAf0FDyO1QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1563063242</pqid></control><display><type>article</type><title>Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rothé, Benjamin ; Saliou, Jean-Michel ; Quinternet, Marc ; Back, Régis ; Tiotiu, Decebal ; Jacquemin, Clémence ; Loegler, Christine ; Schlotter, Florence ; Peña, Vlad ; Eckert, Kelvin ; Moréra, Solange ; Dorsselaer, Alain Van ; Branlant, Christiane ; Massenet, Séverine ; Sanglier-Cianférani, Sarah ; Manival, Xavier ; Charpentier, Bruno</creator><creatorcontrib>Rothé, Benjamin ; Saliou, Jean-Michel ; Quinternet, Marc ; Back, Régis ; Tiotiu, Decebal ; Jacquemin, Clémence ; Loegler, Christine ; Schlotter, Florence ; Peña, Vlad ; Eckert, Kelvin ; Moréra, Solange ; Dorsselaer, Alain Van ; Branlant, Christiane ; Massenet, Séverine ; Sanglier-Cianférani, Sarah ; Manival, Xavier ; Charpentier, Bruno</creatorcontrib><description>Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gku612</identifier><identifier>PMID: 25170085</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Biochemistry, Molecular Biology ; Humans ; Life Sciences ; Molecular biology ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Ribonucleoproteins, Small Nuclear - chemistry ; Ribonucleoproteins, Small Nuclear - genetics ; Ribonucleoproteins, Small Nuclear - metabolism ; Ribonucleoproteins, Small Nucleolar - chemistry ; Ribonucleoproteins, Small Nucleolar - genetics ; Ribonucleoproteins, Small Nucleolar - metabolism ; Ribosomal Proteins - chemistry ; Ribosomal Proteins - genetics ; Ribosomal Proteins - metabolism ; RNA 3' End Processing ; RNA, Small Nucleolar - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Structural Biology</subject><ispartof>Nucleic acids research, 2014-09, Vol.42 (16), p.10731-10747</ispartof><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-9d27601d3f2f6fb6a5f9ac63339341de1e6b4cd7dc8cfc462bb08284904ad4be3</citedby><cites>FETCH-LOGICAL-c445t-9d27601d3f2f6fb6a5f9ac63339341de1e6b4cd7dc8cfc462bb08284904ad4be3</cites><orcidid>0000-0002-7717-7096 ; 0000-0003-2955-2987 ; 0000-0003-4728-5499 ; 0000-0001-5187-8356 ; 0000-0002-8299-7136 ; 0000-0001-7781-0448 ; 0000-0003-4013-4129 ; 0000-0003-0105-5196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176330/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176330/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25170085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02279890$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rothé, Benjamin</creatorcontrib><creatorcontrib>Saliou, Jean-Michel</creatorcontrib><creatorcontrib>Quinternet, Marc</creatorcontrib><creatorcontrib>Back, Régis</creatorcontrib><creatorcontrib>Tiotiu, Decebal</creatorcontrib><creatorcontrib>Jacquemin, Clémence</creatorcontrib><creatorcontrib>Loegler, Christine</creatorcontrib><creatorcontrib>Schlotter, Florence</creatorcontrib><creatorcontrib>Peña, Vlad</creatorcontrib><creatorcontrib>Eckert, Kelvin</creatorcontrib><creatorcontrib>Moréra, Solange</creatorcontrib><creatorcontrib>Dorsselaer, Alain Van</creatorcontrib><creatorcontrib>Branlant, Christiane</creatorcontrib><creatorcontrib>Massenet, Séverine</creatorcontrib><creatorcontrib>Sanglier-Cianférani, Sarah</creatorcontrib><creatorcontrib>Manival, Xavier</creatorcontrib><creatorcontrib>Charpentier, Bruno</creatorcontrib><title>Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer.</description><subject>Biochemistry, Molecular Biology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Molecular biology</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Ribonucleoproteins, Small Nuclear - chemistry</subject><subject>Ribonucleoproteins, Small Nuclear - genetics</subject><subject>Ribonucleoproteins, Small Nuclear - metabolism</subject><subject>Ribonucleoproteins, Small Nucleolar - chemistry</subject><subject>Ribonucleoproteins, Small Nucleolar - genetics</subject><subject>Ribonucleoproteins, Small Nucleolar - metabolism</subject><subject>Ribosomal Proteins - chemistry</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosomal Proteins - metabolism</subject><subject>RNA 3' End Processing</subject><subject>RNA, Small Nucleolar - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Structural Biology</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks2O0zAUhS0EYsrAhgdAXgKaUP_FSTZIo_JTpApGI1hbjmO3BtcutlPRZ-ClcZQyAjasLB1_95xr6wDwFKNXGHV06WVcbr-NHJN7YIEpJxXrOLkPFoiiusKItRfgUUpfEcIM1-whuCA1bhBq6wX4eRND1tbDtc34Ckrow1E72IcfcLV8A5MPtx9voExJ73t3gkaqHOIVVMHnGFyCSjs3OhknRekiymyDh8HAvNMwKWlMcIP1W3g4B90miWF_goONWmVofdaxuJapx-CBkS7pJ-fzEnx59_bzal1tPr3_sLreVIqxOlfdQBqO8EANMdz0XNamk4pTSjvK8KCx5j1TQzOoVhnFOOl71JKWdYjJgfWaXoLXs-9h7Pd6mNd24hDtXsaTCNKKv2-83YltOAqGmxKDisGL2WD3z9j6eiMmDRHSdG2Hjriwz89hMXwfdcpib9P0a9LrMCaBW9Q2qLjy_6M1nzDCSEFfzqiKIaWozd0aGImpFKKUQsylKPCzP997h_5uAf0FDyO1QQ</recordid><startdate>20140915</startdate><enddate>20140915</enddate><creator>Rothé, Benjamin</creator><creator>Saliou, Jean-Michel</creator><creator>Quinternet, Marc</creator><creator>Back, Régis</creator><creator>Tiotiu, Decebal</creator><creator>Jacquemin, Clémence</creator><creator>Loegler, Christine</creator><creator>Schlotter, Florence</creator><creator>Peña, Vlad</creator><creator>Eckert, Kelvin</creator><creator>Moréra, Solange</creator><creator>Dorsselaer, Alain Van</creator><creator>Branlant, Christiane</creator><creator>Massenet, Séverine</creator><creator>Sanglier-Cianférani, Sarah</creator><creator>Manival, Xavier</creator><creator>Charpentier, Bruno</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7717-7096</orcidid><orcidid>https://orcid.org/0000-0003-2955-2987</orcidid><orcidid>https://orcid.org/0000-0003-4728-5499</orcidid><orcidid>https://orcid.org/0000-0001-5187-8356</orcidid><orcidid>https://orcid.org/0000-0002-8299-7136</orcidid><orcidid>https://orcid.org/0000-0001-7781-0448</orcidid><orcidid>https://orcid.org/0000-0003-4013-4129</orcidid><orcidid>https://orcid.org/0000-0003-0105-5196</orcidid></search><sort><creationdate>20140915</creationdate><title>Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction</title><author>Rothé, Benjamin ; Saliou, Jean-Michel ; Quinternet, Marc ; Back, Régis ; Tiotiu, Decebal ; Jacquemin, Clémence ; Loegler, Christine ; Schlotter, Florence ; Peña, Vlad ; Eckert, Kelvin ; Moréra, Solange ; Dorsselaer, Alain Van ; Branlant, Christiane ; Massenet, Séverine ; Sanglier-Cianférani, Sarah ; Manival, Xavier ; Charpentier, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-9d27601d3f2f6fb6a5f9ac63339341de1e6b4cd7dc8cfc462bb08284904ad4be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Molecular biology</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Ribonucleoproteins, Small Nuclear - chemistry</topic><topic>Ribonucleoproteins, Small Nuclear - genetics</topic><topic>Ribonucleoproteins, Small Nuclear - metabolism</topic><topic>Ribonucleoproteins, Small Nucleolar - chemistry</topic><topic>Ribonucleoproteins, Small Nucleolar - genetics</topic><topic>Ribonucleoproteins, Small Nucleolar - metabolism</topic><topic>Ribosomal Proteins - chemistry</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosomal Proteins - metabolism</topic><topic>RNA 3' End Processing</topic><topic>RNA, Small Nucleolar - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Structural Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rothé, Benjamin</creatorcontrib><creatorcontrib>Saliou, Jean-Michel</creatorcontrib><creatorcontrib>Quinternet, Marc</creatorcontrib><creatorcontrib>Back, Régis</creatorcontrib><creatorcontrib>Tiotiu, Decebal</creatorcontrib><creatorcontrib>Jacquemin, Clémence</creatorcontrib><creatorcontrib>Loegler, Christine</creatorcontrib><creatorcontrib>Schlotter, Florence</creatorcontrib><creatorcontrib>Peña, Vlad</creatorcontrib><creatorcontrib>Eckert, Kelvin</creatorcontrib><creatorcontrib>Moréra, Solange</creatorcontrib><creatorcontrib>Dorsselaer, Alain Van</creatorcontrib><creatorcontrib>Branlant, Christiane</creatorcontrib><creatorcontrib>Massenet, Séverine</creatorcontrib><creatorcontrib>Sanglier-Cianférani, Sarah</creatorcontrib><creatorcontrib>Manival, Xavier</creatorcontrib><creatorcontrib>Charpentier, Bruno</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rothé, Benjamin</au><au>Saliou, Jean-Michel</au><au>Quinternet, Marc</au><au>Back, Régis</au><au>Tiotiu, Decebal</au><au>Jacquemin, Clémence</au><au>Loegler, Christine</au><au>Schlotter, Florence</au><au>Peña, Vlad</au><au>Eckert, Kelvin</au><au>Moréra, Solange</au><au>Dorsselaer, Alain Van</au><au>Branlant, Christiane</au><au>Massenet, Séverine</au><au>Sanglier-Cianférani, Sarah</au><au>Manival, Xavier</au><au>Charpentier, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2014-09-15</date><risdate>2014</risdate><volume>42</volume><issue>16</issue><spage>10731</spage><epage>10747</epage><pages>10731-10747</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25170085</pmid><doi>10.1093/nar/gku612</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7717-7096</orcidid><orcidid>https://orcid.org/0000-0003-2955-2987</orcidid><orcidid>https://orcid.org/0000-0003-4728-5499</orcidid><orcidid>https://orcid.org/0000-0001-5187-8356</orcidid><orcidid>https://orcid.org/0000-0002-8299-7136</orcidid><orcidid>https://orcid.org/0000-0001-7781-0448</orcidid><orcidid>https://orcid.org/0000-0003-4013-4129</orcidid><orcidid>https://orcid.org/0000-0003-0105-5196</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2014-09, Vol.42 (16), p.10731-10747 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4176330 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Biochemistry, Molecular Biology Humans Life Sciences Molecular biology Nuclear Proteins - genetics Nuclear Proteins - metabolism Ribonucleoproteins, Small Nuclear - chemistry Ribonucleoproteins, Small Nuclear - genetics Ribonucleoproteins, Small Nuclear - metabolism Ribonucleoproteins, Small Nucleolar - chemistry Ribonucleoproteins, Small Nucleolar - genetics Ribonucleoproteins, Small Nucleolar - metabolism Ribosomal Proteins - chemistry Ribosomal Proteins - genetics Ribosomal Proteins - metabolism RNA 3' End Processing RNA, Small Nucleolar - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Structural Biology |
title | Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Hit1,%20a%20novel%20box%20C/D%20snoRNP%20assembly%20factor,%20controls%20cellular%20concentration%20of%20the%20scaffolding%20protein%20Rsa1%20by%20direct%20interaction&rft.jtitle=Nucleic%20acids%20research&rft.au=Roth%C3%A9,%20Benjamin&rft.date=2014-09-15&rft.volume=42&rft.issue=16&rft.spage=10731&rft.epage=10747&rft.pages=10731-10747&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gku612&rft_dat=%3Cproquest_pubme%3E1808703306%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1563063242&rft_id=info:pmid/25170085&rfr_iscdi=true |