Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin
At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically f...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-09, Vol.5 (1), p.4870-4870, Article 4870 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4870 |
---|---|
container_issue | 1 |
container_start_page | 4870 |
container_title | Nature communications |
container_volume | 5 |
creator | Arroyo-Camejo, Silvia Lazariev, Andrii Hell, Stefan W. Balasubramanian, Gopalakrishnan |
description | At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions.
Quantum gates based on geometric phase shifts offer a promising approach for the realization of fault-tolerant quantum computing. Using nitrogen-vacancy centre qubits in diamond, this study experimentally realises a high-fidelty, non-adiabatic, non-Abelian holonomic single-qubit gate at room temperature. |
doi_str_mv | 10.1038/ncomms5870 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4175576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1562427147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-f67087d5e7962caa687a4b8bb8e8c7ef0fd0278a0717ed9b203b67d6ef6b8bbf3</originalsourceid><addsrcrecordid>eNplkV9LwzAUxYMoTqYvfgAp-CJKNUnbJHsRZPgPBEX0OaTtbRdpk5mkwr69GZs6Nfch4d4f555wEDok-JzgTFyYyva9LwTHW2iP4pykhNNse-M9Qgfev-F4sgkReb6LRrSghGHK9tDTs7V9EqCfg1NhcJDMdDtLG11Dp8MimdnOGtvrKvHatB2k70OpQ9KqAIk1iUq87XSd-rBs-Lk2-2inUZ2Hg_U9Rq831y_Tu_Th8fZ-evWQVgUWIW0Yx4LXBfAJo5VSTHCVl6IsBYiKQ4ObGlMuFOaEQz0pKc5KxmsGDVtSTTZGlyvd-VD2UFdgglOdnDvdK7eQVmn5e2L0TLb2Q-aEFwVnUeBkLeDs-wA-yF77CrpOGbCDl6RgNKec5Dyix3_QNzs4E7-3pMiEFbEidbqiKme9d9B8myFYLrOSP1lF-GjT_jf6lUwEzlaAjyPTgtvY-V_uE0OLoJ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561965656</pqid></control><display><type>article</type><title>Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Arroyo-Camejo, Silvia ; Lazariev, Andrii ; Hell, Stefan W. ; Balasubramanian, Gopalakrishnan</creator><creatorcontrib>Arroyo-Camejo, Silvia ; Lazariev, Andrii ; Hell, Stefan W. ; Balasubramanian, Gopalakrishnan</creatorcontrib><description>At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions.
Quantum gates based on geometric phase shifts offer a promising approach for the realization of fault-tolerant quantum computing. Using nitrogen-vacancy centre qubits in diamond, this study experimentally realises a high-fidelty, non-adiabatic, non-Abelian holonomic single-qubit gate at room temperature.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms5870</identifier><identifier>PMID: 25216026</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/25 ; 639/766/483/640 ; 639/925/927/481 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2014-09, Vol.5 (1), p.4870-4870, Article 4870</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><rights>Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2014 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-f67087d5e7962caa687a4b8bb8e8c7ef0fd0278a0717ed9b203b67d6ef6b8bbf3</citedby><cites>FETCH-LOGICAL-c508t-f67087d5e7962caa687a4b8bb8e8c7ef0fd0278a0717ed9b203b67d6ef6b8bbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4175576/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4175576/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25216026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arroyo-Camejo, Silvia</creatorcontrib><creatorcontrib>Lazariev, Andrii</creatorcontrib><creatorcontrib>Hell, Stefan W.</creatorcontrib><creatorcontrib>Balasubramanian, Gopalakrishnan</creatorcontrib><title>Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions.
Quantum gates based on geometric phase shifts offer a promising approach for the realization of fault-tolerant quantum computing. Using nitrogen-vacancy centre qubits in diamond, this study experimentally realises a high-fidelty, non-adiabatic, non-Abelian holonomic single-qubit gate at room temperature.</description><subject>639/766/25</subject><subject>639/766/483/640</subject><subject>639/925/927/481</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV9LwzAUxYMoTqYvfgAp-CJKNUnbJHsRZPgPBEX0OaTtbRdpk5mkwr69GZs6Nfch4d4f555wEDok-JzgTFyYyva9LwTHW2iP4pykhNNse-M9Qgfev-F4sgkReb6LRrSghGHK9tDTs7V9EqCfg1NhcJDMdDtLG11Dp8MimdnOGtvrKvHatB2k70OpQ9KqAIk1iUq87XSd-rBs-Lk2-2inUZ2Hg_U9Rq831y_Tu_Th8fZ-evWQVgUWIW0Yx4LXBfAJo5VSTHCVl6IsBYiKQ4ObGlMuFOaEQz0pKc5KxmsGDVtSTTZGlyvd-VD2UFdgglOdnDvdK7eQVmn5e2L0TLb2Q-aEFwVnUeBkLeDs-wA-yF77CrpOGbCDl6RgNKec5Dyix3_QNzs4E7-3pMiEFbEidbqiKme9d9B8myFYLrOSP1lF-GjT_jf6lUwEzlaAjyPTgtvY-V_uE0OLoJ0</recordid><startdate>20140912</startdate><enddate>20140912</enddate><creator>Arroyo-Camejo, Silvia</creator><creator>Lazariev, Andrii</creator><creator>Hell, Stefan W.</creator><creator>Balasubramanian, Gopalakrishnan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140912</creationdate><title>Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin</title><author>Arroyo-Camejo, Silvia ; Lazariev, Andrii ; Hell, Stefan W. ; Balasubramanian, Gopalakrishnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-f67087d5e7962caa687a4b8bb8e8c7ef0fd0278a0717ed9b203b67d6ef6b8bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/766/25</topic><topic>639/766/483/640</topic><topic>639/925/927/481</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arroyo-Camejo, Silvia</creatorcontrib><creatorcontrib>Lazariev, Andrii</creatorcontrib><creatorcontrib>Hell, Stefan W.</creatorcontrib><creatorcontrib>Balasubramanian, Gopalakrishnan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arroyo-Camejo, Silvia</au><au>Lazariev, Andrii</au><au>Hell, Stefan W.</au><au>Balasubramanian, Gopalakrishnan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-09-12</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>4870</spage><epage>4870</epage><pages>4870-4870</pages><artnum>4870</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions.
Quantum gates based on geometric phase shifts offer a promising approach for the realization of fault-tolerant quantum computing. Using nitrogen-vacancy centre qubits in diamond, this study experimentally realises a high-fidelty, non-adiabatic, non-Abelian holonomic single-qubit gate at room temperature.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25216026</pmid><doi>10.1038/ncomms5870</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-09, Vol.5 (1), p.4870-4870, Article 4870 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4175576 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection |
subjects | 639/766/25 639/766/483/640 639/925/927/481 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room%20temperature%20high-fidelity%20holonomic%20single-qubit%20gate%20on%20a%20solid-state%20spin&rft.jtitle=Nature%20communications&rft.au=Arroyo-Camejo,%20Silvia&rft.date=2014-09-12&rft.volume=5&rft.issue=1&rft.spage=4870&rft.epage=4870&rft.pages=4870-4870&rft.artnum=4870&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms5870&rft_dat=%3Cproquest_pubme%3E1562427147%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1561965656&rft_id=info:pmid/25216026&rfr_iscdi=true |