MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian clustering approach

The use of liquid chromatography coupled to mass spectrometry has enabled the high-throughput profiling of the metabolite composition of biological samples. However, the large amount of data obtained can be difficult to analyse and often requires computational processing to understand which metaboli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2014-10, Vol.30 (19), p.2764-2771
Hauptverfasser: Daly, Rónán, Rogers, Simon, Wandy, Joe, Jankevics, Andris, Burgess, Karl E V, Breitling, Rainer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2771
container_issue 19
container_start_page 2764
container_title Bioinformatics (Oxford, England)
container_volume 30
creator Daly, Rónán
Rogers, Simon
Wandy, Joe
Jankevics, Andris
Burgess, Karl E V
Breitling, Rainer
description The use of liquid chromatography coupled to mass spectrometry has enabled the high-throughput profiling of the metabolite composition of biological samples. However, the large amount of data obtained can be difficult to analyse and often requires computational processing to understand which metabolites are present in a sample. This article looks at the dual problem of annotating peaks in a sample with a metabolite, together with putatively annotating whether a metabolite is present in the sample. The starting point of the approach is a Bayesian clustering of peaks into groups, each corresponding to putative adducts and isotopes of a single metabolite. The Bayesian modelling introduced here combines information from the mass-to-charge ratio, retention time and intensity of each peak, together with a model of the inter-peak dependency structure, to increase the accuracy of peak annotation. The results inherently contain a quantitative estimate of confidence in the peak annotations and allow an accurate trade-off between precision and recall. Extensive validation experiments using authentic chemical standards show that this system is able to produce more accurate putative identifications than other state-of-the-art systems, while at the same time giving a probabilistic measure of confidence in the annotations. The software has been implemented as part of the mzMatch metabolomics analysis pipeline, which is available for download at http://mzmatch.sourceforge.net/.
doi_str_mv 10.1093/bioinformatics/btu370
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4173012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1566110803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-ddcdfaa7be4eaa3ee68425fc1d6a8d7b4f1124746b9474107e11447ebe1c258f3</originalsourceid><addsrcrecordid>eNpVkUtvFDEMx6MK1JbCR6DKkcvQeJJ5bA-V2lV5SFtxAM6Rk3G2QTPJNslU6rdnYMuKXmzLj58t_xl7D-IjiJW8MD764GKasHibL0yZZSeO2CnItqtUD_DqEAt5wt7k_EsI0YimPWYntVpBK_vmlG3vqFzn7Lfhku9SNGj86POC5BhCLAs8Bh4dn6igiaMvlLlLceKbdXX3nQ9YkM_Zhy1HfoNPlD0Gbsc5F0p_s7uFivb-LXvtcMz07tmfsZ-fbn-sv1Sbb5-_rq83lVUApRoGOzjEzpAiREnU9qpunIWhxX7ojHIAtepUa1aLBdERgFIdGQJbN72TZ-xqz93NZqLBUigJR71LfsL0pCN6_bIS_L3exketoJMC6gXw4RmQ4sNMuejJZ0vjiIHinDU0bQsglqcurc2-1aaYcyJ3WANC_xFJvxRJ70Va5s7_v_Ew9U8V-RuIjZbb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566110803</pqid></control><display><type>article</type><title>MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian clustering approach</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Daly, Rónán ; Rogers, Simon ; Wandy, Joe ; Jankevics, Andris ; Burgess, Karl E V ; Breitling, Rainer</creator><creatorcontrib>Daly, Rónán ; Rogers, Simon ; Wandy, Joe ; Jankevics, Andris ; Burgess, Karl E V ; Breitling, Rainer</creatorcontrib><description>The use of liquid chromatography coupled to mass spectrometry has enabled the high-throughput profiling of the metabolite composition of biological samples. However, the large amount of data obtained can be difficult to analyse and often requires computational processing to understand which metabolites are present in a sample. This article looks at the dual problem of annotating peaks in a sample with a metabolite, together with putatively annotating whether a metabolite is present in the sample. The starting point of the approach is a Bayesian clustering of peaks into groups, each corresponding to putative adducts and isotopes of a single metabolite. The Bayesian modelling introduced here combines information from the mass-to-charge ratio, retention time and intensity of each peak, together with a model of the inter-peak dependency structure, to increase the accuracy of peak annotation. The results inherently contain a quantitative estimate of confidence in the peak annotations and allow an accurate trade-off between precision and recall. Extensive validation experiments using authentic chemical standards show that this system is able to produce more accurate putative identifications than other state-of-the-art systems, while at the same time giving a probabilistic measure of confidence in the annotations. The software has been implemented as part of the mzMatch metabolomics analysis pipeline, which is available for download at http://mzmatch.sourceforge.net/.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btu370</identifier><identifier>PMID: 24916385</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Bayes Theorem ; Chromatography, Liquid - methods ; Cluster Analysis ; Cysteic Acid - analysis ; Data Interpretation, Statistical ; Mass Spectrometry - methods ; Metabolomics ; Normal Distribution ; Original Papers ; Probability ; Reproducibility of Results ; Software ; Triazoles - analysis</subject><ispartof>Bioinformatics (Oxford, England), 2014-10, Vol.30 (19), p.2764-2771</ispartof><rights>The Author 2014. Published by Oxford University Press.</rights><rights>The Author 2014. Published by Oxford University Press. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-ddcdfaa7be4eaa3ee68425fc1d6a8d7b4f1124746b9474107e11447ebe1c258f3</citedby><cites>FETCH-LOGICAL-c411t-ddcdfaa7be4eaa3ee68425fc1d6a8d7b4f1124746b9474107e11447ebe1c258f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173012/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173012/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24916385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Daly, Rónán</creatorcontrib><creatorcontrib>Rogers, Simon</creatorcontrib><creatorcontrib>Wandy, Joe</creatorcontrib><creatorcontrib>Jankevics, Andris</creatorcontrib><creatorcontrib>Burgess, Karl E V</creatorcontrib><creatorcontrib>Breitling, Rainer</creatorcontrib><title>MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian clustering approach</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>The use of liquid chromatography coupled to mass spectrometry has enabled the high-throughput profiling of the metabolite composition of biological samples. However, the large amount of data obtained can be difficult to analyse and often requires computational processing to understand which metabolites are present in a sample. This article looks at the dual problem of annotating peaks in a sample with a metabolite, together with putatively annotating whether a metabolite is present in the sample. The starting point of the approach is a Bayesian clustering of peaks into groups, each corresponding to putative adducts and isotopes of a single metabolite. The Bayesian modelling introduced here combines information from the mass-to-charge ratio, retention time and intensity of each peak, together with a model of the inter-peak dependency structure, to increase the accuracy of peak annotation. The results inherently contain a quantitative estimate of confidence in the peak annotations and allow an accurate trade-off between precision and recall. Extensive validation experiments using authentic chemical standards show that this system is able to produce more accurate putative identifications than other state-of-the-art systems, while at the same time giving a probabilistic measure of confidence in the annotations. The software has been implemented as part of the mzMatch metabolomics analysis pipeline, which is available for download at http://mzmatch.sourceforge.net/.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Chromatography, Liquid - methods</subject><subject>Cluster Analysis</subject><subject>Cysteic Acid - analysis</subject><subject>Data Interpretation, Statistical</subject><subject>Mass Spectrometry - methods</subject><subject>Metabolomics</subject><subject>Normal Distribution</subject><subject>Original Papers</subject><subject>Probability</subject><subject>Reproducibility of Results</subject><subject>Software</subject><subject>Triazoles - analysis</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtvFDEMx6MK1JbCR6DKkcvQeJJ5bA-V2lV5SFtxAM6Rk3G2QTPJNslU6rdnYMuKXmzLj58t_xl7D-IjiJW8MD764GKasHibL0yZZSeO2CnItqtUD_DqEAt5wt7k_EsI0YimPWYntVpBK_vmlG3vqFzn7Lfhku9SNGj86POC5BhCLAs8Bh4dn6igiaMvlLlLceKbdXX3nQ9YkM_Zhy1HfoNPlD0Gbsc5F0p_s7uFivb-LXvtcMz07tmfsZ-fbn-sv1Sbb5-_rq83lVUApRoGOzjEzpAiREnU9qpunIWhxX7ojHIAtepUa1aLBdERgFIdGQJbN72TZ-xqz93NZqLBUigJR71LfsL0pCN6_bIS_L3exketoJMC6gXw4RmQ4sNMuejJZ0vjiIHinDU0bQsglqcurc2-1aaYcyJ3WANC_xFJvxRJ70Va5s7_v_Ew9U8V-RuIjZbb</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Daly, Rónán</creator><creator>Rogers, Simon</creator><creator>Wandy, Joe</creator><creator>Jankevics, Andris</creator><creator>Burgess, Karl E V</creator><creator>Breitling, Rainer</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141001</creationdate><title>MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian clustering approach</title><author>Daly, Rónán ; Rogers, Simon ; Wandy, Joe ; Jankevics, Andris ; Burgess, Karl E V ; Breitling, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-ddcdfaa7be4eaa3ee68425fc1d6a8d7b4f1124746b9474107e11447ebe1c258f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Chromatography, Liquid - methods</topic><topic>Cluster Analysis</topic><topic>Cysteic Acid - analysis</topic><topic>Data Interpretation, Statistical</topic><topic>Mass Spectrometry - methods</topic><topic>Metabolomics</topic><topic>Normal Distribution</topic><topic>Original Papers</topic><topic>Probability</topic><topic>Reproducibility of Results</topic><topic>Software</topic><topic>Triazoles - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daly, Rónán</creatorcontrib><creatorcontrib>Rogers, Simon</creatorcontrib><creatorcontrib>Wandy, Joe</creatorcontrib><creatorcontrib>Jankevics, Andris</creatorcontrib><creatorcontrib>Burgess, Karl E V</creatorcontrib><creatorcontrib>Breitling, Rainer</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daly, Rónán</au><au>Rogers, Simon</au><au>Wandy, Joe</au><au>Jankevics, Andris</au><au>Burgess, Karl E V</au><au>Breitling, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian clustering approach</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>30</volume><issue>19</issue><spage>2764</spage><epage>2771</epage><pages>2764-2771</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>The use of liquid chromatography coupled to mass spectrometry has enabled the high-throughput profiling of the metabolite composition of biological samples. However, the large amount of data obtained can be difficult to analyse and often requires computational processing to understand which metabolites are present in a sample. This article looks at the dual problem of annotating peaks in a sample with a metabolite, together with putatively annotating whether a metabolite is present in the sample. The starting point of the approach is a Bayesian clustering of peaks into groups, each corresponding to putative adducts and isotopes of a single metabolite. The Bayesian modelling introduced here combines information from the mass-to-charge ratio, retention time and intensity of each peak, together with a model of the inter-peak dependency structure, to increase the accuracy of peak annotation. The results inherently contain a quantitative estimate of confidence in the peak annotations and allow an accurate trade-off between precision and recall. Extensive validation experiments using authentic chemical standards show that this system is able to produce more accurate putative identifications than other state-of-the-art systems, while at the same time giving a probabilistic measure of confidence in the annotations. The software has been implemented as part of the mzMatch metabolomics analysis pipeline, which is available for download at http://mzmatch.sourceforge.net/.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>24916385</pmid><doi>10.1093/bioinformatics/btu370</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2014-10, Vol.30 (19), p.2764-2771
issn 1367-4803
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4173012
source MEDLINE; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Bayes Theorem
Chromatography, Liquid - methods
Cluster Analysis
Cysteic Acid - analysis
Data Interpretation, Statistical
Mass Spectrometry - methods
Metabolomics
Normal Distribution
Original Papers
Probability
Reproducibility of Results
Software
Triazoles - analysis
title MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian clustering approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MetAssign:%20probabilistic%20annotation%20of%20metabolites%20from%20LC-MS%20data%20using%20a%20Bayesian%20clustering%20approach&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Daly,%20R%C3%B3n%C3%A1n&rft.date=2014-10-01&rft.volume=30&rft.issue=19&rft.spage=2764&rft.epage=2771&rft.pages=2764-2771&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btu370&rft_dat=%3Cproquest_pubme%3E1566110803%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566110803&rft_id=info:pmid/24916385&rfr_iscdi=true