Detection of Quiescent Cardiac Phases in Echocardiography Data Using Nonlinear Filtering and Boundary Detection Techniques
We describe an algorithm to detect cardiac quiescence within a heartbeat using nonlinear filtering and boundary detection techniques in echocardiography images. The motivation for detection of these quiescent phases is to provide improved cardiac gating to obtain motion-artifact-free images of the h...
Gespeichert in:
Veröffentlicht in: | Journal of digital imaging 2014-10, Vol.27 (5), p.625-632 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 632 |
---|---|
container_issue | 5 |
container_start_page | 625 |
container_title | Journal of digital imaging |
container_volume | 27 |
creator | Ravichandran, Lakshminarayan Wick, Carson A. McClellan, James H. Liu, Tian Tridandapani, Srini |
description | We describe an algorithm to detect cardiac quiescence within a heartbeat using nonlinear filtering and boundary detection techniques in echocardiography images. The motivation for detection of these quiescent phases is to provide improved cardiac gating to obtain motion-artifact-free images of the heart at cardiac computed tomography (CT). Currently, cardiac gating is provided through electrocardiography (ECG), which does not provide information about the instantaneous mechanical state of the heart. Our goal is to test if information about the actual mechanical motion of the heart obtained from B-mode echocardiographic data could potentially be used for gating purposes. The nonlinear filtering algorithm presented involves anisotropic diffusion to smoothen the homogeneous regions of the B-mode images while preserving image edges that represent myocardial boundaries. Following this, we detect the boundary of a particular region of interest (ROI) using a thresholding step. The positional changes of this ROI are then observed for quiescent phases over multiple cardiac cycles using the ECG’s R-R interval. In a pilot study, seven subjects were imaged in the apical, four-chamber view, and quiescence of the interventricular septum was primarily observed in the diastolic region of the ECG signal. However, the position and length of quiescence vary across multiple heartbeats for the same individual and for different individuals as well. The center of quiescence for the seven patients ranged from 51 to 84 % and did not show a trend with heart rates, which ranged from 54 to 83 beats per minute. The gating intervals based on such analysis of echocardiographic signals could potentially optimize cardiac CT gating. |
doi_str_mv | 10.1007/s10278-014-9702-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4171429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3439396901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-de599c170a15af8dc6df011754ee5004b648b0f5b01204a14e209ec0e3a29313</originalsourceid><addsrcrecordid>eNp1kU-LFDEQxYMo7jj6AbxIwIuX1qp0utN9EXR2V4XFPzCCt5BJV89k6Ulmk25BP71pZx1WwVOg8qtX9eox9hThJQKoVwlBqKYAlEWrQBTlPbbAGptCCfXtPltA06oCm6Y9Y49SugZAVSn5kJ0J2VStEvWC_Tynkezogueh518mR8mSH_nKxM4Zyz_vTKLEnecXdhfsXA3baA67H_zcjIZ_Tc5v-cfgB-fJRH7phpHiXDO-42_D5DsTM3uasia78-5movSYPejNkOjJ7btk68uL9ep9cfXp3YfVm6vCVlCORUdV21pUYLAyfdPZuusBsxNJVAHITS2bDfTVBlCANChJQEsWqDSiLbFcstdH2cO02VM3u4tm0Ifo9nkzHYzTf_94t9Pb8F1LVCizxJK9uBWIYd571HuXjzQMxlOYksaqlnUOoiwz-vwf9DpM0Wd3vyloy1JApvBI2RhSitSflkHQc7D6GKzOweo5WD0rP7vr4tTxJ8kMiCOQDvP5Kd4Z_V_VX8qmr9M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564093320</pqid></control><display><type>article</type><title>Detection of Quiescent Cardiac Phases in Echocardiography Data Using Nonlinear Filtering and Boundary Detection Techniques</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ravichandran, Lakshminarayan ; Wick, Carson A. ; McClellan, James H. ; Liu, Tian ; Tridandapani, Srini</creator><creatorcontrib>Ravichandran, Lakshminarayan ; Wick, Carson A. ; McClellan, James H. ; Liu, Tian ; Tridandapani, Srini</creatorcontrib><description>We describe an algorithm to detect cardiac quiescence within a heartbeat using nonlinear filtering and boundary detection techniques in echocardiography images. The motivation for detection of these quiescent phases is to provide improved cardiac gating to obtain motion-artifact-free images of the heart at cardiac computed tomography (CT). Currently, cardiac gating is provided through electrocardiography (ECG), which does not provide information about the instantaneous mechanical state of the heart. Our goal is to test if information about the actual mechanical motion of the heart obtained from B-mode echocardiographic data could potentially be used for gating purposes. The nonlinear filtering algorithm presented involves anisotropic diffusion to smoothen the homogeneous regions of the B-mode images while preserving image edges that represent myocardial boundaries. Following this, we detect the boundary of a particular region of interest (ROI) using a thresholding step. The positional changes of this ROI are then observed for quiescent phases over multiple cardiac cycles using the ECG’s R-R interval. In a pilot study, seven subjects were imaged in the apical, four-chamber view, and quiescence of the interventricular septum was primarily observed in the diastolic region of the ECG signal. However, the position and length of quiescence vary across multiple heartbeats for the same individual and for different individuals as well. The center of quiescence for the seven patients ranged from 51 to 84 % and did not show a trend with heart rates, which ranged from 54 to 83 beats per minute. The gating intervals based on such analysis of echocardiographic signals could potentially optimize cardiac CT gating.</description><identifier>ISSN: 0897-1889</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-014-9702-3</identifier><identifier>PMID: 24859726</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Adult ; Algorithms ; Cardiac-Gated Imaging Techniques - methods ; Echocardiography - methods ; Electrocardiography - methods ; Female ; Heart ; Heart Rate - physiology ; Humans ; Image Enhancement - instrumentation ; Image Enhancement - methods ; Imaging ; Male ; Medicine ; Medicine & Public Health ; Middle Aged ; Radiology ; Young Adult</subject><ispartof>Journal of digital imaging, 2014-10, Vol.27 (5), p.625-632</ispartof><rights>Society for Imaging Informatics in Medicine 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-de599c170a15af8dc6df011754ee5004b648b0f5b01204a14e209ec0e3a29313</citedby><cites>FETCH-LOGICAL-c503t-de599c170a15af8dc6df011754ee5004b648b0f5b01204a14e209ec0e3a29313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4171429/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4171429/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24859726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravichandran, Lakshminarayan</creatorcontrib><creatorcontrib>Wick, Carson A.</creatorcontrib><creatorcontrib>McClellan, James H.</creatorcontrib><creatorcontrib>Liu, Tian</creatorcontrib><creatorcontrib>Tridandapani, Srini</creatorcontrib><title>Detection of Quiescent Cardiac Phases in Echocardiography Data Using Nonlinear Filtering and Boundary Detection Techniques</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><addtitle>J Digit Imaging</addtitle><description>We describe an algorithm to detect cardiac quiescence within a heartbeat using nonlinear filtering and boundary detection techniques in echocardiography images. The motivation for detection of these quiescent phases is to provide improved cardiac gating to obtain motion-artifact-free images of the heart at cardiac computed tomography (CT). Currently, cardiac gating is provided through electrocardiography (ECG), which does not provide information about the instantaneous mechanical state of the heart. Our goal is to test if information about the actual mechanical motion of the heart obtained from B-mode echocardiographic data could potentially be used for gating purposes. The nonlinear filtering algorithm presented involves anisotropic diffusion to smoothen the homogeneous regions of the B-mode images while preserving image edges that represent myocardial boundaries. Following this, we detect the boundary of a particular region of interest (ROI) using a thresholding step. The positional changes of this ROI are then observed for quiescent phases over multiple cardiac cycles using the ECG’s R-R interval. In a pilot study, seven subjects were imaged in the apical, four-chamber view, and quiescence of the interventricular septum was primarily observed in the diastolic region of the ECG signal. However, the position and length of quiescence vary across multiple heartbeats for the same individual and for different individuals as well. The center of quiescence for the seven patients ranged from 51 to 84 % and did not show a trend with heart rates, which ranged from 54 to 83 beats per minute. The gating intervals based on such analysis of echocardiographic signals could potentially optimize cardiac CT gating.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Cardiac-Gated Imaging Techniques - methods</subject><subject>Echocardiography - methods</subject><subject>Electrocardiography - methods</subject><subject>Female</subject><subject>Heart</subject><subject>Heart Rate - physiology</subject><subject>Humans</subject><subject>Image Enhancement - instrumentation</subject><subject>Image Enhancement - methods</subject><subject>Imaging</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Middle Aged</subject><subject>Radiology</subject><subject>Young Adult</subject><issn>0897-1889</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU-LFDEQxYMo7jj6AbxIwIuX1qp0utN9EXR2V4XFPzCCt5BJV89k6Ulmk25BP71pZx1WwVOg8qtX9eox9hThJQKoVwlBqKYAlEWrQBTlPbbAGptCCfXtPltA06oCm6Y9Y49SugZAVSn5kJ0J2VStEvWC_Tynkezogueh518mR8mSH_nKxM4Zyz_vTKLEnecXdhfsXA3baA67H_zcjIZ_Tc5v-cfgB-fJRH7phpHiXDO-42_D5DsTM3uasia78-5movSYPejNkOjJ7btk68uL9ep9cfXp3YfVm6vCVlCORUdV21pUYLAyfdPZuusBsxNJVAHITS2bDfTVBlCANChJQEsWqDSiLbFcstdH2cO02VM3u4tm0Ifo9nkzHYzTf_94t9Pb8F1LVCizxJK9uBWIYd571HuXjzQMxlOYksaqlnUOoiwz-vwf9DpM0Wd3vyloy1JApvBI2RhSitSflkHQc7D6GKzOweo5WD0rP7vr4tTxJ8kMiCOQDvP5Kd4Z_V_VX8qmr9M</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Ravichandran, Lakshminarayan</creator><creator>Wick, Carson A.</creator><creator>McClellan, James H.</creator><creator>Liu, Tian</creator><creator>Tridandapani, Srini</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141001</creationdate><title>Detection of Quiescent Cardiac Phases in Echocardiography Data Using Nonlinear Filtering and Boundary Detection Techniques</title><author>Ravichandran, Lakshminarayan ; Wick, Carson A. ; McClellan, James H. ; Liu, Tian ; Tridandapani, Srini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-de599c170a15af8dc6df011754ee5004b648b0f5b01204a14e209ec0e3a29313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Cardiac-Gated Imaging Techniques - methods</topic><topic>Echocardiography - methods</topic><topic>Electrocardiography - methods</topic><topic>Female</topic><topic>Heart</topic><topic>Heart Rate - physiology</topic><topic>Humans</topic><topic>Image Enhancement - instrumentation</topic><topic>Image Enhancement - methods</topic><topic>Imaging</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Middle Aged</topic><topic>Radiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravichandran, Lakshminarayan</creatorcontrib><creatorcontrib>Wick, Carson A.</creatorcontrib><creatorcontrib>McClellan, James H.</creatorcontrib><creatorcontrib>Liu, Tian</creatorcontrib><creatorcontrib>Tridandapani, Srini</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravichandran, Lakshminarayan</au><au>Wick, Carson A.</au><au>McClellan, James H.</au><au>Liu, Tian</au><au>Tridandapani, Srini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Quiescent Cardiac Phases in Echocardiography Data Using Nonlinear Filtering and Boundary Detection Techniques</atitle><jtitle>Journal of digital imaging</jtitle><stitle>J Digit Imaging</stitle><addtitle>J Digit Imaging</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>27</volume><issue>5</issue><spage>625</spage><epage>632</epage><pages>625-632</pages><issn>0897-1889</issn><eissn>1618-727X</eissn><abstract>We describe an algorithm to detect cardiac quiescence within a heartbeat using nonlinear filtering and boundary detection techniques in echocardiography images. The motivation for detection of these quiescent phases is to provide improved cardiac gating to obtain motion-artifact-free images of the heart at cardiac computed tomography (CT). Currently, cardiac gating is provided through electrocardiography (ECG), which does not provide information about the instantaneous mechanical state of the heart. Our goal is to test if information about the actual mechanical motion of the heart obtained from B-mode echocardiographic data could potentially be used for gating purposes. The nonlinear filtering algorithm presented involves anisotropic diffusion to smoothen the homogeneous regions of the B-mode images while preserving image edges that represent myocardial boundaries. Following this, we detect the boundary of a particular region of interest (ROI) using a thresholding step. The positional changes of this ROI are then observed for quiescent phases over multiple cardiac cycles using the ECG’s R-R interval. In a pilot study, seven subjects were imaged in the apical, four-chamber view, and quiescence of the interventricular septum was primarily observed in the diastolic region of the ECG signal. However, the position and length of quiescence vary across multiple heartbeats for the same individual and for different individuals as well. The center of quiescence for the seven patients ranged from 51 to 84 % and did not show a trend with heart rates, which ranged from 54 to 83 beats per minute. The gating intervals based on such analysis of echocardiographic signals could potentially optimize cardiac CT gating.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>24859726</pmid><doi>10.1007/s10278-014-9702-3</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-1889 |
ispartof | Journal of digital imaging, 2014-10, Vol.27 (5), p.625-632 |
issn | 0897-1889 1618-727X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4171429 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adult Algorithms Cardiac-Gated Imaging Techniques - methods Echocardiography - methods Electrocardiography - methods Female Heart Heart Rate - physiology Humans Image Enhancement - instrumentation Image Enhancement - methods Imaging Male Medicine Medicine & Public Health Middle Aged Radiology Young Adult |
title | Detection of Quiescent Cardiac Phases in Echocardiography Data Using Nonlinear Filtering and Boundary Detection Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A19%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Quiescent%20Cardiac%20Phases%20in%20Echocardiography%20Data%20Using%20Nonlinear%20Filtering%20and%20Boundary%20Detection%20Techniques&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Ravichandran,%20Lakshminarayan&rft.date=2014-10-01&rft.volume=27&rft.issue=5&rft.spage=625&rft.epage=632&rft.pages=625-632&rft.issn=0897-1889&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-014-9702-3&rft_dat=%3Cproquest_pubme%3E3439396901%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1564093320&rft_id=info:pmid/24859726&rfr_iscdi=true |