Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior

Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2014-01, Vol.2014 (2014), p.1-10
Hauptverfasser: Feng, Qianjin, Yang, Wei, Jiang, Jun, Lu, Yisu, Chen, Wufan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2014
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2014
creator Feng, Qianjin
Yang, Wei
Jiang, Jun
Lu, Yisu
Chen, Wufan
description Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.
doi_str_mv 10.1155/2014/717206
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4164260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1566115394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-5fe66a4ca73aa0666337ba93c4d4964200a9810f440641bffc5f96918f7712c63</originalsourceid><addsrcrecordid>eNqNkU9rFDEYh4MotlZP3iVHUcYmk38zF6GtrQpdFK3gLbybSbrRzGSbZNr6AfzeZtm61Jun_CBPnrwvP4SeU_KGUiEOW0L5oaKqJfIB2qeKd41UtHu4y-T7HnqS8w9CBFWCPkZ7rWgFJ5Lvo9-LORQ_xgECPk7gp-ZiHmPCX-3laKcCxccJH0O2A67hnU_erIIt-HOKxuaMF_62zMniRRxswDe-rPDR5HMsKa69qQ-cm_PGAdOAF5B-xmv8peY44jNvw1BFPqan6JGDkO2zu_MAfTs7vTj50Jx_ev_x5Oi8MZz1pRHOSgncgGIARErJmFpCzwwfeC95Swj0HSWOb3ajS-eMcL3saeeUoq2R7AC93XrX83K0g6kbJgh6nfwI6ZeO4PW_N5Nf6ct4rTmtekmq4OWdIMWr2eaiR5-NDQEmG-esqZCylsJ6XtHXW9SkmHOybvcNJXpTnN4Up7fFVfrF_cl27N-mKvBqC6z8NMCN_z-brYh1cA9mXMqO_QH4Uqv0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566115394</pqid></control><display><type>article</type><title>Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Feng, Qianjin ; Yang, Wei ; Jiang, Jun ; Lu, Yisu ; Chen, Wufan</creator><contributor>Alexov, Emil</contributor><creatorcontrib>Feng, Qianjin ; Yang, Wei ; Jiang, Jun ; Lu, Yisu ; Chen, Wufan ; Alexov, Emil</creatorcontrib><description>Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2014/717206</identifier><identifier>PMID: 25254064</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Anisotropy ; Brain - pathology ; Brain Neoplasms - pathology ; Cluster Analysis ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Markov Chains ; Multimodal Imaging - methods ; Pattern Recognition, Automated - methods</subject><ispartof>Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-10</ispartof><rights>Copyright © 2014 Yisu Lu et al.</rights><rights>Copyright © 2014 Yisu Lu et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-5fe66a4ca73aa0666337ba93c4d4964200a9810f440641bffc5f96918f7712c63</citedby><cites>FETCH-LOGICAL-c439t-5fe66a4ca73aa0666337ba93c4d4964200a9810f440641bffc5f96918f7712c63</cites><orcidid>0000-0001-8647-0596 ; 0000-0002-2161-3231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164260/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164260/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25254064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Alexov, Emil</contributor><creatorcontrib>Feng, Qianjin</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Jiang, Jun</creatorcontrib><creatorcontrib>Lu, Yisu</creatorcontrib><creatorcontrib>Chen, Wufan</creatorcontrib><title>Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Brain - pathology</subject><subject>Brain Neoplasms - pathology</subject><subject>Cluster Analysis</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Markov Chains</subject><subject>Multimodal Imaging - methods</subject><subject>Pattern Recognition, Automated - methods</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU9rFDEYh4MotlZP3iVHUcYmk38zF6GtrQpdFK3gLbybSbrRzGSbZNr6AfzeZtm61Jun_CBPnrwvP4SeU_KGUiEOW0L5oaKqJfIB2qeKd41UtHu4y-T7HnqS8w9CBFWCPkZ7rWgFJ5Lvo9-LORQ_xgECPk7gp-ZiHmPCX-3laKcCxccJH0O2A67hnU_erIIt-HOKxuaMF_62zMniRRxswDe-rPDR5HMsKa69qQ-cm_PGAdOAF5B-xmv8peY44jNvw1BFPqan6JGDkO2zu_MAfTs7vTj50Jx_ev_x5Oi8MZz1pRHOSgncgGIARErJmFpCzwwfeC95Swj0HSWOb3ajS-eMcL3saeeUoq2R7AC93XrX83K0g6kbJgh6nfwI6ZeO4PW_N5Nf6ct4rTmtekmq4OWdIMWr2eaiR5-NDQEmG-esqZCylsJ6XtHXW9SkmHOybvcNJXpTnN4Up7fFVfrF_cl27N-mKvBqC6z8NMCN_z-brYh1cA9mXMqO_QH4Uqv0</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Feng, Qianjin</creator><creator>Yang, Wei</creator><creator>Jiang, Jun</creator><creator>Lu, Yisu</creator><creator>Chen, Wufan</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8647-0596</orcidid><orcidid>https://orcid.org/0000-0002-2161-3231</orcidid></search><sort><creationdate>20140101</creationdate><title>Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior</title><author>Feng, Qianjin ; Yang, Wei ; Jiang, Jun ; Lu, Yisu ; Chen, Wufan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-5fe66a4ca73aa0666337ba93c4d4964200a9810f440641bffc5f96918f7712c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Brain - pathology</topic><topic>Brain Neoplasms - pathology</topic><topic>Cluster Analysis</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Markov Chains</topic><topic>Multimodal Imaging - methods</topic><topic>Pattern Recognition, Automated - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Qianjin</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Jiang, Jun</creatorcontrib><creatorcontrib>Lu, Yisu</creatorcontrib><creatorcontrib>Chen, Wufan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Qianjin</au><au>Yang, Wei</au><au>Jiang, Jun</au><au>Lu, Yisu</au><au>Chen, Wufan</au><au>Alexov, Emil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>25254064</pmid><doi>10.1155/2014/717206</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8647-0596</orcidid><orcidid>https://orcid.org/0000-0002-2161-3231</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-10
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4164260
source MEDLINE; PubMed Central Open Access; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Anisotropy
Brain - pathology
Brain Neoplasms - pathology
Cluster Analysis
Humans
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Markov Chains
Multimodal Imaging - methods
Pattern Recognition, Automated - methods
title Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Brain-Tumor%20Segmentation%20Based%20on%20Dirichlet%20Process%20Mixture%20Model%20with%20Anisotropic%20Diffusion%20and%20Markov%20Random%20Field%20Prior&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Feng,%20Qianjin&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2014/717206&rft_dat=%3Cproquest_pubme%3E1566115394%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566115394&rft_id=info:pmid/25254064&rfr_iscdi=true