Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior
Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appear...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2014-01, Vol.2014 (2014), p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2014 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2014 |
creator | Feng, Qianjin Yang, Wei Jiang, Jun Lu, Yisu Chen, Wufan |
description | Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use. |
doi_str_mv | 10.1155/2014/717206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4164260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1566115394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-5fe66a4ca73aa0666337ba93c4d4964200a9810f440641bffc5f96918f7712c63</originalsourceid><addsrcrecordid>eNqNkU9rFDEYh4MotlZP3iVHUcYmk38zF6GtrQpdFK3gLbybSbrRzGSbZNr6AfzeZtm61Jun_CBPnrwvP4SeU_KGUiEOW0L5oaKqJfIB2qeKd41UtHu4y-T7HnqS8w9CBFWCPkZ7rWgFJ5Lvo9-LORQ_xgECPk7gp-ZiHmPCX-3laKcCxccJH0O2A67hnU_erIIt-HOKxuaMF_62zMniRRxswDe-rPDR5HMsKa69qQ-cm_PGAdOAF5B-xmv8peY44jNvw1BFPqan6JGDkO2zu_MAfTs7vTj50Jx_ev_x5Oi8MZz1pRHOSgncgGIARErJmFpCzwwfeC95Swj0HSWOb3ajS-eMcL3saeeUoq2R7AC93XrX83K0g6kbJgh6nfwI6ZeO4PW_N5Nf6ct4rTmtekmq4OWdIMWr2eaiR5-NDQEmG-esqZCylsJ6XtHXW9SkmHOybvcNJXpTnN4Up7fFVfrF_cl27N-mKvBqC6z8NMCN_z-brYh1cA9mXMqO_QH4Uqv0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566115394</pqid></control><display><type>article</type><title>Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Feng, Qianjin ; Yang, Wei ; Jiang, Jun ; Lu, Yisu ; Chen, Wufan</creator><contributor>Alexov, Emil</contributor><creatorcontrib>Feng, Qianjin ; Yang, Wei ; Jiang, Jun ; Lu, Yisu ; Chen, Wufan ; Alexov, Emil</creatorcontrib><description>Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2014/717206</identifier><identifier>PMID: 25254064</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Anisotropy ; Brain - pathology ; Brain Neoplasms - pathology ; Cluster Analysis ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Markov Chains ; Multimodal Imaging - methods ; Pattern Recognition, Automated - methods</subject><ispartof>Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-10</ispartof><rights>Copyright © 2014 Yisu Lu et al.</rights><rights>Copyright © 2014 Yisu Lu et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-5fe66a4ca73aa0666337ba93c4d4964200a9810f440641bffc5f96918f7712c63</citedby><cites>FETCH-LOGICAL-c439t-5fe66a4ca73aa0666337ba93c4d4964200a9810f440641bffc5f96918f7712c63</cites><orcidid>0000-0001-8647-0596 ; 0000-0002-2161-3231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164260/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164260/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25254064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Alexov, Emil</contributor><creatorcontrib>Feng, Qianjin</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Jiang, Jun</creatorcontrib><creatorcontrib>Lu, Yisu</creatorcontrib><creatorcontrib>Chen, Wufan</creatorcontrib><title>Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Brain - pathology</subject><subject>Brain Neoplasms - pathology</subject><subject>Cluster Analysis</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Markov Chains</subject><subject>Multimodal Imaging - methods</subject><subject>Pattern Recognition, Automated - methods</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU9rFDEYh4MotlZP3iVHUcYmk38zF6GtrQpdFK3gLbybSbrRzGSbZNr6AfzeZtm61Jun_CBPnrwvP4SeU_KGUiEOW0L5oaKqJfIB2qeKd41UtHu4y-T7HnqS8w9CBFWCPkZ7rWgFJ5Lvo9-LORQ_xgECPk7gp-ZiHmPCX-3laKcCxccJH0O2A67hnU_erIIt-HOKxuaMF_62zMniRRxswDe-rPDR5HMsKa69qQ-cm_PGAdOAF5B-xmv8peY44jNvw1BFPqan6JGDkO2zu_MAfTs7vTj50Jx_ev_x5Oi8MZz1pRHOSgncgGIARErJmFpCzwwfeC95Swj0HSWOb3ajS-eMcL3saeeUoq2R7AC93XrX83K0g6kbJgh6nfwI6ZeO4PW_N5Nf6ct4rTmtekmq4OWdIMWr2eaiR5-NDQEmG-esqZCylsJ6XtHXW9SkmHOybvcNJXpTnN4Up7fFVfrF_cl27N-mKvBqC6z8NMCN_z-brYh1cA9mXMqO_QH4Uqv0</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Feng, Qianjin</creator><creator>Yang, Wei</creator><creator>Jiang, Jun</creator><creator>Lu, Yisu</creator><creator>Chen, Wufan</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8647-0596</orcidid><orcidid>https://orcid.org/0000-0002-2161-3231</orcidid></search><sort><creationdate>20140101</creationdate><title>Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior</title><author>Feng, Qianjin ; Yang, Wei ; Jiang, Jun ; Lu, Yisu ; Chen, Wufan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-5fe66a4ca73aa0666337ba93c4d4964200a9810f440641bffc5f96918f7712c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Brain - pathology</topic><topic>Brain Neoplasms - pathology</topic><topic>Cluster Analysis</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Markov Chains</topic><topic>Multimodal Imaging - methods</topic><topic>Pattern Recognition, Automated - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Qianjin</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Jiang, Jun</creatorcontrib><creatorcontrib>Lu, Yisu</creatorcontrib><creatorcontrib>Chen, Wufan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Qianjin</au><au>Yang, Wei</au><au>Jiang, Jun</au><au>Lu, Yisu</au><au>Chen, Wufan</au><au>Alexov, Emil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>25254064</pmid><doi>10.1155/2014/717206</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8647-0596</orcidid><orcidid>https://orcid.org/0000-0002-2161-3231</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-10 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4164260 |
source | MEDLINE; PubMed Central Open Access; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Anisotropy Brain - pathology Brain Neoplasms - pathology Cluster Analysis Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Markov Chains Multimodal Imaging - methods Pattern Recognition, Automated - methods |
title | Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Brain-Tumor%20Segmentation%20Based%20on%20Dirichlet%20Process%20Mixture%20Model%20with%20Anisotropic%20Diffusion%20and%20Markov%20Random%20Field%20Prior&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Feng,%20Qianjin&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2014/717206&rft_dat=%3Cproquest_pubme%3E1566115394%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566115394&rft_id=info:pmid/25254064&rfr_iscdi=true |