Topography and areal organization of mouse visual cortex

To guide future experiments aimed at understanding the mouse visual system, it is essential that we have a solid handle on the global topography of visual cortical areas. Ideally, the method used to measure cortical topography is objective, robust, and simple enough to guide subsequent targeting of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2014-09, Vol.34 (37), p.12587-12600
Hauptverfasser: Garrett, Marina E, Nauhaus, Ian, Marshel, James H, Callaway, Edward M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12600
container_issue 37
container_start_page 12587
container_title The Journal of neuroscience
container_volume 34
creator Garrett, Marina E
Nauhaus, Ian
Marshel, James H
Callaway, Edward M
description To guide future experiments aimed at understanding the mouse visual system, it is essential that we have a solid handle on the global topography of visual cortical areas. Ideally, the method used to measure cortical topography is objective, robust, and simple enough to guide subsequent targeting of visual areas in each subject. We developed an automated method that uses retinotopic maps of mouse visual cortex obtained with intrinsic signal imaging (Schuett et al., 2002; Kalatsky and Stryker, 2003; Marshel et al., 2011) and applies an algorithm to automatically identify cortical regions that satisfy a set of quantifiable criteria for what constitutes a visual area. This approach facilitated detailed parcellation of mouse visual cortex, delineating nine known areas (primary visual cortex, lateromedial area, anterolateral area, rostrolateral area, anteromedial area, posteromedial area, laterointermediate area, posterior area, and postrhinal area), and revealing two additional areas that have not been previously described as visuotopically mapped in mice (laterolateral anterior area and medial area). Using the topographic maps and defined area boundaries from each animal, we characterized several features of map organization, including variability in area position, area size, visual field coverage, and cortical magnification. We demonstrate that higher areas in mice often have representations that are incomplete or biased toward particular regions of visual space, suggestive of specializations for processing specific types of information about the environment. This work provides a comprehensive description of mouse visuotopic organization and describes essential tools for accurate functional localization of visual areas.
doi_str_mv 10.1523/jneurosci.1124-14.2014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4160785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1561972458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-1106da09ed6518341a2d3959edda2c3c62f51c0c14e6d350b9a9d4737e3c18d13</originalsourceid><addsrcrecordid>eNpVkFtPwkAQhTdGI3j5C6SPvhR39tb2xcQQVAyRROF5s-xuoaR0cbcl4q-3BCT6NJmcM2dmPoR6gPvACb1fVbbxLuiiD0BYDKxPMLAz1G3VLCYMwznqYpLgWLCEddBVCCuMcYIhuUQdwgnOSCa6KJ26jVt4tVnuIlWZSHmrysj5haqKb1UXropcHq1dE2y0LULTitr52n7doItclcHeHus1mj0Np4OXeDx5Hg0ex7HmlNYxABZG4cwawSGlDBQxNONtbxTRVAuSc9BYA7PCUI7nmcoMS2hiqYbUAL1GD4fcTTNfW6NtVXtVyo0v1srvpFOF_K9UxVIu3FYyEDhJeRtwdwzw7rOxoZbrImhblqqy7VsSuIAsIYynrVUcrLpFG7zNT2sAyz12-fo2nL1PPgYjuccugck99naw9_fI09gvZ_oDMmqBCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561972458</pqid></control><display><type>article</type><title>Topography and areal organization of mouse visual cortex</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Garrett, Marina E ; Nauhaus, Ian ; Marshel, James H ; Callaway, Edward M</creator><creatorcontrib>Garrett, Marina E ; Nauhaus, Ian ; Marshel, James H ; Callaway, Edward M</creatorcontrib><description>To guide future experiments aimed at understanding the mouse visual system, it is essential that we have a solid handle on the global topography of visual cortical areas. Ideally, the method used to measure cortical topography is objective, robust, and simple enough to guide subsequent targeting of visual areas in each subject. We developed an automated method that uses retinotopic maps of mouse visual cortex obtained with intrinsic signal imaging (Schuett et al., 2002; Kalatsky and Stryker, 2003; Marshel et al., 2011) and applies an algorithm to automatically identify cortical regions that satisfy a set of quantifiable criteria for what constitutes a visual area. This approach facilitated detailed parcellation of mouse visual cortex, delineating nine known areas (primary visual cortex, lateromedial area, anterolateral area, rostrolateral area, anteromedial area, posteromedial area, laterointermediate area, posterior area, and postrhinal area), and revealing two additional areas that have not been previously described as visuotopically mapped in mice (laterolateral anterior area and medial area). Using the topographic maps and defined area boundaries from each animal, we characterized several features of map organization, including variability in area position, area size, visual field coverage, and cortical magnification. We demonstrate that higher areas in mice often have representations that are incomplete or biased toward particular regions of visual space, suggestive of specializations for processing specific types of information about the environment. This work provides a comprehensive description of mouse visuotopic organization and describes essential tools for accurate functional localization of visual areas.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.1124-14.2014</identifier><identifier>PMID: 25209296</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Action Potentials - physiology ; Animals ; Brain Mapping - methods ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Nerve Net - cytology ; Nerve Net - physiology ; Visual Cortex - cytology ; Visual Cortex - physiology ; Visual Perception - physiology</subject><ispartof>The Journal of neuroscience, 2014-09, Vol.34 (37), p.12587-12600</ispartof><rights>Copyright © 2014 the authors 0270-6474/14/3412587-14$15.00/0.</rights><rights>Copyright © 2014 the authors 0270-6474/14/3412587-14$15.00/0 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-1106da09ed6518341a2d3959edda2c3c62f51c0c14e6d350b9a9d4737e3c18d13</citedby><cites>FETCH-LOGICAL-c533t-1106da09ed6518341a2d3959edda2c3c62f51c0c14e6d350b9a9d4737e3c18d13</cites><orcidid>0000-0002-6366-5267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160785/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160785/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25209296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garrett, Marina E</creatorcontrib><creatorcontrib>Nauhaus, Ian</creatorcontrib><creatorcontrib>Marshel, James H</creatorcontrib><creatorcontrib>Callaway, Edward M</creatorcontrib><title>Topography and areal organization of mouse visual cortex</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>To guide future experiments aimed at understanding the mouse visual system, it is essential that we have a solid handle on the global topography of visual cortical areas. Ideally, the method used to measure cortical topography is objective, robust, and simple enough to guide subsequent targeting of visual areas in each subject. We developed an automated method that uses retinotopic maps of mouse visual cortex obtained with intrinsic signal imaging (Schuett et al., 2002; Kalatsky and Stryker, 2003; Marshel et al., 2011) and applies an algorithm to automatically identify cortical regions that satisfy a set of quantifiable criteria for what constitutes a visual area. This approach facilitated detailed parcellation of mouse visual cortex, delineating nine known areas (primary visual cortex, lateromedial area, anterolateral area, rostrolateral area, anteromedial area, posteromedial area, laterointermediate area, posterior area, and postrhinal area), and revealing two additional areas that have not been previously described as visuotopically mapped in mice (laterolateral anterior area and medial area). Using the topographic maps and defined area boundaries from each animal, we characterized several features of map organization, including variability in area position, area size, visual field coverage, and cortical magnification. We demonstrate that higher areas in mice often have representations that are incomplete or biased toward particular regions of visual space, suggestive of specializations for processing specific types of information about the environment. This work provides a comprehensive description of mouse visuotopic organization and describes essential tools for accurate functional localization of visual areas.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Brain Mapping - methods</subject><subject>Female</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Visual Cortex - cytology</subject><subject>Visual Cortex - physiology</subject><subject>Visual Perception - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkFtPwkAQhTdGI3j5C6SPvhR39tb2xcQQVAyRROF5s-xuoaR0cbcl4q-3BCT6NJmcM2dmPoR6gPvACb1fVbbxLuiiD0BYDKxPMLAz1G3VLCYMwznqYpLgWLCEddBVCCuMcYIhuUQdwgnOSCa6KJ26jVt4tVnuIlWZSHmrysj5haqKb1UXropcHq1dE2y0LULTitr52n7doItclcHeHus1mj0Np4OXeDx5Hg0ex7HmlNYxABZG4cwawSGlDBQxNONtbxTRVAuSc9BYA7PCUI7nmcoMS2hiqYbUAL1GD4fcTTNfW6NtVXtVyo0v1srvpFOF_K9UxVIu3FYyEDhJeRtwdwzw7rOxoZbrImhblqqy7VsSuIAsIYynrVUcrLpFG7zNT2sAyz12-fo2nL1PPgYjuccugck99naw9_fI09gvZ_oDMmqBCA</recordid><startdate>20140910</startdate><enddate>20140910</enddate><creator>Garrett, Marina E</creator><creator>Nauhaus, Ian</creator><creator>Marshel, James H</creator><creator>Callaway, Edward M</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6366-5267</orcidid></search><sort><creationdate>20140910</creationdate><title>Topography and areal organization of mouse visual cortex</title><author>Garrett, Marina E ; Nauhaus, Ian ; Marshel, James H ; Callaway, Edward M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-1106da09ed6518341a2d3959edda2c3c62f51c0c14e6d350b9a9d4737e3c18d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Brain Mapping - methods</topic><topic>Female</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Visual Cortex - cytology</topic><topic>Visual Cortex - physiology</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garrett, Marina E</creatorcontrib><creatorcontrib>Nauhaus, Ian</creatorcontrib><creatorcontrib>Marshel, James H</creatorcontrib><creatorcontrib>Callaway, Edward M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garrett, Marina E</au><au>Nauhaus, Ian</au><au>Marshel, James H</au><au>Callaway, Edward M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topography and areal organization of mouse visual cortex</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2014-09-10</date><risdate>2014</risdate><volume>34</volume><issue>37</issue><spage>12587</spage><epage>12600</epage><pages>12587-12600</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>To guide future experiments aimed at understanding the mouse visual system, it is essential that we have a solid handle on the global topography of visual cortical areas. Ideally, the method used to measure cortical topography is objective, robust, and simple enough to guide subsequent targeting of visual areas in each subject. We developed an automated method that uses retinotopic maps of mouse visual cortex obtained with intrinsic signal imaging (Schuett et al., 2002; Kalatsky and Stryker, 2003; Marshel et al., 2011) and applies an algorithm to automatically identify cortical regions that satisfy a set of quantifiable criteria for what constitutes a visual area. This approach facilitated detailed parcellation of mouse visual cortex, delineating nine known areas (primary visual cortex, lateromedial area, anterolateral area, rostrolateral area, anteromedial area, posteromedial area, laterointermediate area, posterior area, and postrhinal area), and revealing two additional areas that have not been previously described as visuotopically mapped in mice (laterolateral anterior area and medial area). Using the topographic maps and defined area boundaries from each animal, we characterized several features of map organization, including variability in area position, area size, visual field coverage, and cortical magnification. We demonstrate that higher areas in mice often have representations that are incomplete or biased toward particular regions of visual space, suggestive of specializations for processing specific types of information about the environment. This work provides a comprehensive description of mouse visuotopic organization and describes essential tools for accurate functional localization of visual areas.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>25209296</pmid><doi>10.1523/jneurosci.1124-14.2014</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6366-5267</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2014-09, Vol.34 (37), p.12587-12600
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4160785
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Action Potentials - physiology
Animals
Brain Mapping - methods
Female
Male
Mice
Mice, Inbred C57BL
Nerve Net - cytology
Nerve Net - physiology
Visual Cortex - cytology
Visual Cortex - physiology
Visual Perception - physiology
title Topography and areal organization of mouse visual cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topography%20and%20areal%20organization%20of%20mouse%20visual%20cortex&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Garrett,%20Marina%20E&rft.date=2014-09-10&rft.volume=34&rft.issue=37&rft.spage=12587&rft.epage=12600&rft.pages=12587-12600&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.1124-14.2014&rft_dat=%3Cproquest_pubme%3E1561972458%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1561972458&rft_id=info:pmid/25209296&rfr_iscdi=true