Assessing morphokinetic parameters via time lapse microscopy (TLM) to predict euploidy: are aneuploidy risk classification models universal?

Purpose To determine if Aneuploidy Risk Classification Models are predictive of euploidy/aneuploidy amongst IVF facilities. Methods We retrospectively applied key time lapse imaging events of embryos (Campbell et al.[ 5 , 6 ]) to stratify embryos into 3 groups: low, medium and high risk of aneuploid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of assisted reproduction and genetics 2014-09, Vol.31 (9), p.1231-1242
Hauptverfasser: Kramer, Yael G., Kofinas, Jason D., Melzer, Katherine, Noyes, Nicole, McCaffrey, Caroline, Buldo-Licciardi, Julia, McCulloh, David H., Grifo, James A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1242
container_issue 9
container_start_page 1231
container_title Journal of assisted reproduction and genetics
container_volume 31
creator Kramer, Yael G.
Kofinas, Jason D.
Melzer, Katherine
Noyes, Nicole
McCaffrey, Caroline
Buldo-Licciardi, Julia
McCulloh, David H.
Grifo, James A.
description Purpose To determine if Aneuploidy Risk Classification Models are predictive of euploidy/aneuploidy amongst IVF facilities. Methods We retrospectively applied key time lapse imaging events of embryos (Campbell et al.[ 5 , 6 ]) to stratify embryos into 3 groups: low, medium and high risk of aneuploidy. The actual ploidy results (from array comparative genomic hybridization) were compared with expectations [ 5 , 6 ]. Sources of variability in morphokinetic parameters were determined using Analysis of Variance (ANOVA). Results The model failed to segregate euploid embryos from aneuploid embryos cultured at our facility. Further analysis indicated that the variability of embryos among patients was too great to allow selection of euploid embryos based on simple morphokinetic thresholds. Clinical selection of embryos based on morphokinetics alone is unlikely to identify euploid embryos accurately for transfer or yield higher rates of live delivery. Conclusions The use of non-invasive morphokinetics is unlikely to discriminate aneuploid from euploid embryos. Further, it does not approach the accuracy of preimplantation genetic screening with array comparative genomic hybridization.
doi_str_mv 10.1007/s10815-014-0285-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4156952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1561036315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-cddcdd4be3992f6a3730d05fd359aa6ce30c9ced7ee1f8cc1a2a8d94baa7420c3</originalsourceid><addsrcrecordid>eNqNkt9qFTEQxhdRbK0-gDcS8KZerE6S_ZP1olKK2sIRb-p1mJPMnqbd3azJ7oHzDj60WU5bWkEoBJIwv_kmk_my7C2Hjxyg_hQ5KF7mwIschCpz_iw75GUt81pKeJ7OUKocikodZK9ivAaARgn5MjsQRVOJWjWH2Z_TGClGN2xY78N45W_cQJMzbMSAPU0UIts6ZJPriXU4RmK9M8FH48cdO75c_fjAJs_GQNaZidE8dt7Z3WeGgRgOd3cWXLxhpsNUqnUGJ-eHVNBSF9k8uG0qg92X19mLFrtIb273o-zXt6-XZ-f56uf3i7PTVW5Sc1NurE2rWJNsGtFWKGsJFsrWyrJBrAxJMI0hWxPxVhnDUaCyTbFGrAsBRh5lJ3vdcV73ZA0NU8BOj8H1GHbao9OPI4O70hu_1QUvq6YUSeD4ViD43zPFSfcuGuq61LGfo05YpaRQSj4F5SArycuEvv8HvfZzGNJPLBQUcpltovieWqYQA7X37-agF1vovS10soVebKF5ynn3sOH7jDsfJEDsgZhCw4bCg9L_Vf0LJnnHcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560431573</pqid></control><display><type>article</type><title>Assessing morphokinetic parameters via time lapse microscopy (TLM) to predict euploidy: are aneuploidy risk classification models universal?</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kramer, Yael G. ; Kofinas, Jason D. ; Melzer, Katherine ; Noyes, Nicole ; McCaffrey, Caroline ; Buldo-Licciardi, Julia ; McCulloh, David H. ; Grifo, James A.</creator><creatorcontrib>Kramer, Yael G. ; Kofinas, Jason D. ; Melzer, Katherine ; Noyes, Nicole ; McCaffrey, Caroline ; Buldo-Licciardi, Julia ; McCulloh, David H. ; Grifo, James A.</creatorcontrib><description>Purpose To determine if Aneuploidy Risk Classification Models are predictive of euploidy/aneuploidy amongst IVF facilities. Methods We retrospectively applied key time lapse imaging events of embryos (Campbell et al.[ 5 , 6 ]) to stratify embryos into 3 groups: low, medium and high risk of aneuploidy. The actual ploidy results (from array comparative genomic hybridization) were compared with expectations [ 5 , 6 ]. Sources of variability in morphokinetic parameters were determined using Analysis of Variance (ANOVA). Results The model failed to segregate euploid embryos from aneuploid embryos cultured at our facility. Further analysis indicated that the variability of embryos among patients was too great to allow selection of euploid embryos based on simple morphokinetic thresholds. Clinical selection of embryos based on morphokinetics alone is unlikely to identify euploid embryos accurately for transfer or yield higher rates of live delivery. Conclusions The use of non-invasive morphokinetics is unlikely to discriminate aneuploid from euploid embryos. Further, it does not approach the accuracy of preimplantation genetic screening with array comparative genomic hybridization.</description><identifier>ISSN: 1058-0468</identifier><identifier>EISSN: 1573-7330</identifier><identifier>DOI: 10.1007/s10815-014-0285-1</identifier><identifier>PMID: 24962789</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis of Variance ; Aneuploidy ; Biopsy ; Comparative Genomic Hybridization ; Embryo Biology ; Embryonic Development ; Embryos ; Female ; Fertility ; Fertilization in Vitro ; Gynecology ; Human Genetics ; Humans ; Infertility ; Lasers ; Male ; Medicine ; Medicine &amp; Public Health ; Microscopy ; Mineral oils ; Ovaries ; Patients ; Preimplantation Diagnosis - methods ; Reproductive Medicine ; Retrospective Studies ; Sperm ; Time-Lapse Imaging ; Variance analysis</subject><ispartof>Journal of assisted reproduction and genetics, 2014-09, Vol.31 (9), p.1231-1242</ispartof><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-cddcdd4be3992f6a3730d05fd359aa6ce30c9ced7ee1f8cc1a2a8d94baa7420c3</citedby><cites>FETCH-LOGICAL-c573t-cddcdd4be3992f6a3730d05fd359aa6ce30c9ced7ee1f8cc1a2a8d94baa7420c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156952/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156952/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,41467,42536,51297,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24962789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kramer, Yael G.</creatorcontrib><creatorcontrib>Kofinas, Jason D.</creatorcontrib><creatorcontrib>Melzer, Katherine</creatorcontrib><creatorcontrib>Noyes, Nicole</creatorcontrib><creatorcontrib>McCaffrey, Caroline</creatorcontrib><creatorcontrib>Buldo-Licciardi, Julia</creatorcontrib><creatorcontrib>McCulloh, David H.</creatorcontrib><creatorcontrib>Grifo, James A.</creatorcontrib><title>Assessing morphokinetic parameters via time lapse microscopy (TLM) to predict euploidy: are aneuploidy risk classification models universal?</title><title>Journal of assisted reproduction and genetics</title><addtitle>J Assist Reprod Genet</addtitle><addtitle>J Assist Reprod Genet</addtitle><description>Purpose To determine if Aneuploidy Risk Classification Models are predictive of euploidy/aneuploidy amongst IVF facilities. Methods We retrospectively applied key time lapse imaging events of embryos (Campbell et al.[ 5 , 6 ]) to stratify embryos into 3 groups: low, medium and high risk of aneuploidy. The actual ploidy results (from array comparative genomic hybridization) were compared with expectations [ 5 , 6 ]. Sources of variability in morphokinetic parameters were determined using Analysis of Variance (ANOVA). Results The model failed to segregate euploid embryos from aneuploid embryos cultured at our facility. Further analysis indicated that the variability of embryos among patients was too great to allow selection of euploid embryos based on simple morphokinetic thresholds. Clinical selection of embryos based on morphokinetics alone is unlikely to identify euploid embryos accurately for transfer or yield higher rates of live delivery. Conclusions The use of non-invasive morphokinetics is unlikely to discriminate aneuploid from euploid embryos. Further, it does not approach the accuracy of preimplantation genetic screening with array comparative genomic hybridization.</description><subject>Analysis of Variance</subject><subject>Aneuploidy</subject><subject>Biopsy</subject><subject>Comparative Genomic Hybridization</subject><subject>Embryo Biology</subject><subject>Embryonic Development</subject><subject>Embryos</subject><subject>Female</subject><subject>Fertility</subject><subject>Fertilization in Vitro</subject><subject>Gynecology</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Infertility</subject><subject>Lasers</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Microscopy</subject><subject>Mineral oils</subject><subject>Ovaries</subject><subject>Patients</subject><subject>Preimplantation Diagnosis - methods</subject><subject>Reproductive Medicine</subject><subject>Retrospective Studies</subject><subject>Sperm</subject><subject>Time-Lapse Imaging</subject><subject>Variance analysis</subject><issn>1058-0468</issn><issn>1573-7330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkt9qFTEQxhdRbK0-gDcS8KZerE6S_ZP1olKK2sIRb-p1mJPMnqbd3azJ7oHzDj60WU5bWkEoBJIwv_kmk_my7C2Hjxyg_hQ5KF7mwIschCpz_iw75GUt81pKeJ7OUKocikodZK9ivAaARgn5MjsQRVOJWjWH2Z_TGClGN2xY78N45W_cQJMzbMSAPU0UIts6ZJPriXU4RmK9M8FH48cdO75c_fjAJs_GQNaZidE8dt7Z3WeGgRgOd3cWXLxhpsNUqnUGJ-eHVNBSF9k8uG0qg92X19mLFrtIb273o-zXt6-XZ-f56uf3i7PTVW5Sc1NurE2rWJNsGtFWKGsJFsrWyrJBrAxJMI0hWxPxVhnDUaCyTbFGrAsBRh5lJ3vdcV73ZA0NU8BOj8H1GHbao9OPI4O70hu_1QUvq6YUSeD4ViD43zPFSfcuGuq61LGfo05YpaRQSj4F5SArycuEvv8HvfZzGNJPLBQUcpltovieWqYQA7X37-agF1vovS10soVebKF5ynn3sOH7jDsfJEDsgZhCw4bCg9L_Vf0LJnnHcg</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Kramer, Yael G.</creator><creator>Kofinas, Jason D.</creator><creator>Melzer, Katherine</creator><creator>Noyes, Nicole</creator><creator>McCaffrey, Caroline</creator><creator>Buldo-Licciardi, Julia</creator><creator>McCulloh, David H.</creator><creator>Grifo, James A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140901</creationdate><title>Assessing morphokinetic parameters via time lapse microscopy (TLM) to predict euploidy: are aneuploidy risk classification models universal?</title><author>Kramer, Yael G. ; Kofinas, Jason D. ; Melzer, Katherine ; Noyes, Nicole ; McCaffrey, Caroline ; Buldo-Licciardi, Julia ; McCulloh, David H. ; Grifo, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-cddcdd4be3992f6a3730d05fd359aa6ce30c9ced7ee1f8cc1a2a8d94baa7420c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis of Variance</topic><topic>Aneuploidy</topic><topic>Biopsy</topic><topic>Comparative Genomic Hybridization</topic><topic>Embryo Biology</topic><topic>Embryonic Development</topic><topic>Embryos</topic><topic>Female</topic><topic>Fertility</topic><topic>Fertilization in Vitro</topic><topic>Gynecology</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Infertility</topic><topic>Lasers</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Microscopy</topic><topic>Mineral oils</topic><topic>Ovaries</topic><topic>Patients</topic><topic>Preimplantation Diagnosis - methods</topic><topic>Reproductive Medicine</topic><topic>Retrospective Studies</topic><topic>Sperm</topic><topic>Time-Lapse Imaging</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kramer, Yael G.</creatorcontrib><creatorcontrib>Kofinas, Jason D.</creatorcontrib><creatorcontrib>Melzer, Katherine</creatorcontrib><creatorcontrib>Noyes, Nicole</creatorcontrib><creatorcontrib>McCaffrey, Caroline</creatorcontrib><creatorcontrib>Buldo-Licciardi, Julia</creatorcontrib><creatorcontrib>McCulloh, David H.</creatorcontrib><creatorcontrib>Grifo, James A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of assisted reproduction and genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kramer, Yael G.</au><au>Kofinas, Jason D.</au><au>Melzer, Katherine</au><au>Noyes, Nicole</au><au>McCaffrey, Caroline</au><au>Buldo-Licciardi, Julia</au><au>McCulloh, David H.</au><au>Grifo, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing morphokinetic parameters via time lapse microscopy (TLM) to predict euploidy: are aneuploidy risk classification models universal?</atitle><jtitle>Journal of assisted reproduction and genetics</jtitle><stitle>J Assist Reprod Genet</stitle><addtitle>J Assist Reprod Genet</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>31</volume><issue>9</issue><spage>1231</spage><epage>1242</epage><pages>1231-1242</pages><issn>1058-0468</issn><eissn>1573-7330</eissn><abstract>Purpose To determine if Aneuploidy Risk Classification Models are predictive of euploidy/aneuploidy amongst IVF facilities. Methods We retrospectively applied key time lapse imaging events of embryos (Campbell et al.[ 5 , 6 ]) to stratify embryos into 3 groups: low, medium and high risk of aneuploidy. The actual ploidy results (from array comparative genomic hybridization) were compared with expectations [ 5 , 6 ]. Sources of variability in morphokinetic parameters were determined using Analysis of Variance (ANOVA). Results The model failed to segregate euploid embryos from aneuploid embryos cultured at our facility. Further analysis indicated that the variability of embryos among patients was too great to allow selection of euploid embryos based on simple morphokinetic thresholds. Clinical selection of embryos based on morphokinetics alone is unlikely to identify euploid embryos accurately for transfer or yield higher rates of live delivery. Conclusions The use of non-invasive morphokinetics is unlikely to discriminate aneuploid from euploid embryos. Further, it does not approach the accuracy of preimplantation genetic screening with array comparative genomic hybridization.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>24962789</pmid><doi>10.1007/s10815-014-0285-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-0468
ispartof Journal of assisted reproduction and genetics, 2014-09, Vol.31 (9), p.1231-1242
issn 1058-0468
1573-7330
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4156952
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Analysis of Variance
Aneuploidy
Biopsy
Comparative Genomic Hybridization
Embryo Biology
Embryonic Development
Embryos
Female
Fertility
Fertilization in Vitro
Gynecology
Human Genetics
Humans
Infertility
Lasers
Male
Medicine
Medicine & Public Health
Microscopy
Mineral oils
Ovaries
Patients
Preimplantation Diagnosis - methods
Reproductive Medicine
Retrospective Studies
Sperm
Time-Lapse Imaging
Variance analysis
title Assessing morphokinetic parameters via time lapse microscopy (TLM) to predict euploidy: are aneuploidy risk classification models universal?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20morphokinetic%20parameters%20via%20time%20lapse%20microscopy%20(TLM)%20to%20predict%20euploidy:%20are%20aneuploidy%20risk%20classification%20models%20universal?&rft.jtitle=Journal%20of%20assisted%20reproduction%20and%20genetics&rft.au=Kramer,%20Yael%20G.&rft.date=2014-09-01&rft.volume=31&rft.issue=9&rft.spage=1231&rft.epage=1242&rft.pages=1231-1242&rft.issn=1058-0468&rft.eissn=1573-7330&rft_id=info:doi/10.1007/s10815-014-0285-1&rft_dat=%3Cproquest_pubme%3E1561036315%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560431573&rft_id=info:pmid/24962789&rfr_iscdi=true