Crystal Structure and Site-directed Mutational Analysis Reveals Key Residues Involved in Escherichia coli ZapA Function

FtsZ is an essential cell division protein in Escherichia coli, and its localization, filamentation, and bundling at the mid-cell are required for Z-ring stability. Once assembled, the Z-ring recruits a series of proteins that comprise the bacterial divisome. Zaps (FtsZ-associated proteins) stabiliz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2014-08, Vol.289 (34), p.23276-23286
Hauptverfasser: Roach, Elyse J., Kimber, Matthew S., Khursigara, Cezar M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23286
container_issue 34
container_start_page 23276
container_title The Journal of biological chemistry
container_volume 289
creator Roach, Elyse J.
Kimber, Matthew S.
Khursigara, Cezar M.
description FtsZ is an essential cell division protein in Escherichia coli, and its localization, filamentation, and bundling at the mid-cell are required for Z-ring stability. Once assembled, the Z-ring recruits a series of proteins that comprise the bacterial divisome. Zaps (FtsZ-associated proteins) stabilize the Z-ring by increasing lateral interactions between individual filaments, bundling FtsZ to provide a scaffold for divisome assembly. The x-ray crystallographic structure of E. coli ZapA was determined, identifying key structural differences from the existing ZapA structure from Pseudomonas aeruginosa, including a charged α-helix on the globular domains of the ZapA tetramer. Key helix residues in E. coli ZapA were modified using site-directed mutagenesis. These ZapA variants significantly decreased FtsZ bundling in protein sedimentation assays when compared with WT ZapA proteins. Electron micrographs of ZapA-bundled FtsZ filaments showed the modified ZapA variants altered the number of FtsZ filaments per bundle. These in vitro results were corroborated in vivo by expressing the ZapA variants in an E. coli ΔzapA strain. In vivo, ZapA variants that altered FtsZ bundling showed an elongated phenotype, indicating improper cell division. Our findings highlight the importance of key ZapA residues that influence the extent of FtsZ bundling and that ultimately affect Z-ring formation in dividing cells.
doi_str_mv 10.1074/jbc.M114.561928
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4156065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820320081</els_id><sourcerecordid>S0021925820320081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-73b89a34d2c2f162317540c3c0bc4303703c8d6935dd84a683a5074d95bff9f43</originalsourceid><addsrcrecordid>eNp1kUFr3DAUhEVpabZpz7kV_QFvJEvyWpfCsiRpSEKhaaH0IuSn566CYy-S7LD_PlrchOQQHSTBm_mEZgg54WzJ2Uqe3jWwvOFcLlXFdVm_IwvOalEIxf-8JwvGSl7oUtVH5FOMdywvqflHclSqPFI1X5CHTdjHZDt6m8IIaQxIbe_orU9YOB8QEjp6Myab_NBn2Tpv--gj_YkT2i7SK9zne_RuxEgv-2nopuzwPT2LsMXgYesthaHz9K_dren52MMB9Zl8aLMdv_w_j8nv87Nfm-_F9Y-Ly836ugDFdCpWoqm1FdKVULa8KgVfKclAAGtACiZWTEDtKi2Uc7W0VS2syrk4rZq21a0Ux-TbzN2NzT06wD4F25ld8Pc27M1gvXk96f3W_BsmI7mqWKUy4HQGQBhiDNg-ezkzhw5M7sAcOjBzB9nx9eWTz_qn0LNAzwLMH588BhPBYw84B27c4N-EPwKbZZhe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Crystal Structure and Site-directed Mutational Analysis Reveals Key Residues Involved in Escherichia coli ZapA Function</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Roach, Elyse J. ; Kimber, Matthew S. ; Khursigara, Cezar M.</creator><creatorcontrib>Roach, Elyse J. ; Kimber, Matthew S. ; Khursigara, Cezar M.</creatorcontrib><description>FtsZ is an essential cell division protein in Escherichia coli, and its localization, filamentation, and bundling at the mid-cell are required for Z-ring stability. Once assembled, the Z-ring recruits a series of proteins that comprise the bacterial divisome. Zaps (FtsZ-associated proteins) stabilize the Z-ring by increasing lateral interactions between individual filaments, bundling FtsZ to provide a scaffold for divisome assembly. The x-ray crystallographic structure of E. coli ZapA was determined, identifying key structural differences from the existing ZapA structure from Pseudomonas aeruginosa, including a charged α-helix on the globular domains of the ZapA tetramer. Key helix residues in E. coli ZapA were modified using site-directed mutagenesis. These ZapA variants significantly decreased FtsZ bundling in protein sedimentation assays when compared with WT ZapA proteins. Electron micrographs of ZapA-bundled FtsZ filaments showed the modified ZapA variants altered the number of FtsZ filaments per bundle. These in vitro results were corroborated in vivo by expressing the ZapA variants in an E. coli ΔzapA strain. In vivo, ZapA variants that altered FtsZ bundling showed an elongated phenotype, indicating improper cell division. Our findings highlight the importance of key ZapA residues that influence the extent of FtsZ bundling and that ultimately affect Z-ring formation in dividing cells.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.561928</identifier><identifier>PMID: 25002581</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Base Sequence ; Carrier Proteins - chemistry ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Crystallography, X-Ray ; DNA Primers ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Microbiology ; Microscopy, Electron, Transmission ; Models, Molecular ; Mutagenesis, Site-Directed ; Protein Conformation</subject><ispartof>The Journal of biological chemistry, 2014-08, Vol.289 (34), p.23276-23286</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-73b89a34d2c2f162317540c3c0bc4303703c8d6935dd84a683a5074d95bff9f43</citedby><cites>FETCH-LOGICAL-c509t-73b89a34d2c2f162317540c3c0bc4303703c8d6935dd84a683a5074d95bff9f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156065/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156065/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25002581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roach, Elyse J.</creatorcontrib><creatorcontrib>Kimber, Matthew S.</creatorcontrib><creatorcontrib>Khursigara, Cezar M.</creatorcontrib><title>Crystal Structure and Site-directed Mutational Analysis Reveals Key Residues Involved in Escherichia coli ZapA Function</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>FtsZ is an essential cell division protein in Escherichia coli, and its localization, filamentation, and bundling at the mid-cell are required for Z-ring stability. Once assembled, the Z-ring recruits a series of proteins that comprise the bacterial divisome. Zaps (FtsZ-associated proteins) stabilize the Z-ring by increasing lateral interactions between individual filaments, bundling FtsZ to provide a scaffold for divisome assembly. The x-ray crystallographic structure of E. coli ZapA was determined, identifying key structural differences from the existing ZapA structure from Pseudomonas aeruginosa, including a charged α-helix on the globular domains of the ZapA tetramer. Key helix residues in E. coli ZapA were modified using site-directed mutagenesis. These ZapA variants significantly decreased FtsZ bundling in protein sedimentation assays when compared with WT ZapA proteins. Electron micrographs of ZapA-bundled FtsZ filaments showed the modified ZapA variants altered the number of FtsZ filaments per bundle. These in vitro results were corroborated in vivo by expressing the ZapA variants in an E. coli ΔzapA strain. In vivo, ZapA variants that altered FtsZ bundling showed an elongated phenotype, indicating improper cell division. Our findings highlight the importance of key ZapA residues that influence the extent of FtsZ bundling and that ultimately affect Z-ring formation in dividing cells.</description><subject>Base Sequence</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Crystallography, X-Ray</subject><subject>DNA Primers</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Microbiology</subject><subject>Microscopy, Electron, Transmission</subject><subject>Models, Molecular</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein Conformation</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFr3DAUhEVpabZpz7kV_QFvJEvyWpfCsiRpSEKhaaH0IuSn566CYy-S7LD_PlrchOQQHSTBm_mEZgg54WzJ2Uqe3jWwvOFcLlXFdVm_IwvOalEIxf-8JwvGSl7oUtVH5FOMdywvqflHclSqPFI1X5CHTdjHZDt6m8IIaQxIbe_orU9YOB8QEjp6Myab_NBn2Tpv--gj_YkT2i7SK9zne_RuxEgv-2nopuzwPT2LsMXgYesthaHz9K_dren52MMB9Zl8aLMdv_w_j8nv87Nfm-_F9Y-Ly836ugDFdCpWoqm1FdKVULa8KgVfKclAAGtACiZWTEDtKi2Uc7W0VS2syrk4rZq21a0Ux-TbzN2NzT06wD4F25ld8Pc27M1gvXk96f3W_BsmI7mqWKUy4HQGQBhiDNg-ezkzhw5M7sAcOjBzB9nx9eWTz_qn0LNAzwLMH588BhPBYw84B27c4N-EPwKbZZhe</recordid><startdate>20140822</startdate><enddate>20140822</enddate><creator>Roach, Elyse J.</creator><creator>Kimber, Matthew S.</creator><creator>Khursigara, Cezar M.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140822</creationdate><title>Crystal Structure and Site-directed Mutational Analysis Reveals Key Residues Involved in Escherichia coli ZapA Function</title><author>Roach, Elyse J. ; Kimber, Matthew S. ; Khursigara, Cezar M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-73b89a34d2c2f162317540c3c0bc4303703c8d6935dd84a683a5074d95bff9f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Base Sequence</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Crystallography, X-Ray</topic><topic>DNA Primers</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Microbiology</topic><topic>Microscopy, Electron, Transmission</topic><topic>Models, Molecular</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roach, Elyse J.</creatorcontrib><creatorcontrib>Kimber, Matthew S.</creatorcontrib><creatorcontrib>Khursigara, Cezar M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roach, Elyse J.</au><au>Kimber, Matthew S.</au><au>Khursigara, Cezar M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Structure and Site-directed Mutational Analysis Reveals Key Residues Involved in Escherichia coli ZapA Function</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-08-22</date><risdate>2014</risdate><volume>289</volume><issue>34</issue><spage>23276</spage><epage>23286</epage><pages>23276-23286</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>FtsZ is an essential cell division protein in Escherichia coli, and its localization, filamentation, and bundling at the mid-cell are required for Z-ring stability. Once assembled, the Z-ring recruits a series of proteins that comprise the bacterial divisome. Zaps (FtsZ-associated proteins) stabilize the Z-ring by increasing lateral interactions between individual filaments, bundling FtsZ to provide a scaffold for divisome assembly. The x-ray crystallographic structure of E. coli ZapA was determined, identifying key structural differences from the existing ZapA structure from Pseudomonas aeruginosa, including a charged α-helix on the globular domains of the ZapA tetramer. Key helix residues in E. coli ZapA were modified using site-directed mutagenesis. These ZapA variants significantly decreased FtsZ bundling in protein sedimentation assays when compared with WT ZapA proteins. Electron micrographs of ZapA-bundled FtsZ filaments showed the modified ZapA variants altered the number of FtsZ filaments per bundle. These in vitro results were corroborated in vivo by expressing the ZapA variants in an E. coli ΔzapA strain. In vivo, ZapA variants that altered FtsZ bundling showed an elongated phenotype, indicating improper cell division. Our findings highlight the importance of key ZapA residues that influence the extent of FtsZ bundling and that ultimately affect Z-ring formation in dividing cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25002581</pmid><doi>10.1074/jbc.M114.561928</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2014-08, Vol.289 (34), p.23276-23286
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4156065
source MEDLINE; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Base Sequence
Carrier Proteins - chemistry
Carrier Proteins - genetics
Carrier Proteins - metabolism
Crystallography, X-Ray
DNA Primers
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Microbiology
Microscopy, Electron, Transmission
Models, Molecular
Mutagenesis, Site-Directed
Protein Conformation
title Crystal Structure and Site-directed Mutational Analysis Reveals Key Residues Involved in Escherichia coli ZapA Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Structure%20and%20Site-directed%20Mutational%20Analysis%20Reveals%20Key%20Residues%20Involved%20in%20Escherichia%20coli%20ZapA%20Function&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Roach,%20Elyse%20J.&rft.date=2014-08-22&rft.volume=289&rft.issue=34&rft.spage=23276&rft.epage=23286&rft.pages=23276-23286&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.561928&rft_dat=%3Celsevier_pubme%3ES0021925820320081%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25002581&rft_els_id=S0021925820320081&rfr_iscdi=true