Proteasome Dysfunction Activates Autophagy and the Keap1-Nrf2 Pathway

The ubiquitin-proteasome system and autophagy are crucially important for proteostasis in cells. These pathways are interdependent, and dysfunction in either pathway causes accumulation of ubiquitin-positive aggregates, a hallmark of human pathological conditions. To elucidate in vivo compensatory a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2014-09, Vol.289 (36), p.24944-24955
Hauptverfasser: Kageyama, Shun, Sou, Yu-shin, Uemura, Takefumi, Kametaka, Satoshi, Saito, Tetsuya, Ishimura, Ryosuke, Kouno, Tsuguka, Bedford, Lynn, Mayer, R. John, Lee, Myung-Shik, Yamamoto, Masayuki, Waguri, Satoshi, Tanaka, Keiji, Komatsu, Masaaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24955
container_issue 36
container_start_page 24944
container_title The Journal of biological chemistry
container_volume 289
creator Kageyama, Shun
Sou, Yu-shin
Uemura, Takefumi
Kametaka, Satoshi
Saito, Tetsuya
Ishimura, Ryosuke
Kouno, Tsuguka
Bedford, Lynn
Mayer, R. John
Lee, Myung-Shik
Yamamoto, Masayuki
Waguri, Satoshi
Tanaka, Keiji
Komatsu, Masaaki
description The ubiquitin-proteasome system and autophagy are crucially important for proteostasis in cells. These pathways are interdependent, and dysfunction in either pathway causes accumulation of ubiquitin-positive aggregates, a hallmark of human pathological conditions. To elucidate in vivo compensatory action(s) against proteasomal dysfunction, we developed mice with reduced proteasome activity in their livers. The mutant mice exhibited severe liver damage, accompanied by formation of aggregates positive for ubiquitin and p62/Sqstm1, an adaptor protein for both selective autophagy and the anti-oxidative Keap1-Nrf2 pathway. These aggregates were selectively entrapped by autophagosomes, and pathological features of livers with impaired proteasome activity were exacerbated by simultaneous suppression of autophagy. In contrast, concomitant loss of p62/Sqstm1 had no apparent effect on the liver pathology though p62/Sqstm1 was indispensable for the aggregates formation. Furthermore, defective proteasome function led to transcriptional activation of the Nrf2, which served as a physiological adaptation. Our in vivo data suggest that cells contain networks of cellular defense mechanisms against defective proteostasis.
doi_str_mv 10.1074/jbc.M114.580357
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4155663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820316501</els_id><sourcerecordid>1560584814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-e4e7ab668105e4c686ccd463b94596bc4a9af381efa945b712145c1bdcc51fd43</originalsourceid><addsrcrecordid>eNp1kMtPwzAMxiMEgvE4c0M9cumI2yRtL0gTjId4HkDiFqWpy4K2ZiTp0P57Mg0QHPDFlv35s_Uj5BDoEGjBTt5qPbwDYENe0pwXG2QAtMzTnMPLJhlQmkFaZbzcIbvev9EYrIJtspPxWGRZMSDjR2cDKm9nmJwvfdt3OhjbJaOYFiqgT0Z9sPOJel0mqmuSMMHkBtUc0nvXZsmjCpMPtdwnW62aejz4ynvk-WL8dHaV3j5cXp-NblPNaRVSZFioWogSKEemRSm0bpjI64rxStSaqUq1eQnYqtipC8iAcQ11ozWHtmH5Hjld-877eoaNxi44NZVzZ2bKLaVVRv6ddGYiX-1CMuBciDwaHH8ZOPveow9yZrzG6VR1aHsvgQvKS1bC6tbJWqqd9d5h-3MGqFzBlxG-XMGXa_hx4-j3dz_6b9pRUK0FGBktDDrptcFOY2Mc6iAba_41_wQ-UJRv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560584814</pqid></control><display><type>article</type><title>Proteasome Dysfunction Activates Autophagy and the Keap1-Nrf2 Pathway</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kageyama, Shun ; Sou, Yu-shin ; Uemura, Takefumi ; Kametaka, Satoshi ; Saito, Tetsuya ; Ishimura, Ryosuke ; Kouno, Tsuguka ; Bedford, Lynn ; Mayer, R. John ; Lee, Myung-Shik ; Yamamoto, Masayuki ; Waguri, Satoshi ; Tanaka, Keiji ; Komatsu, Masaaki</creator><creatorcontrib>Kageyama, Shun ; Sou, Yu-shin ; Uemura, Takefumi ; Kametaka, Satoshi ; Saito, Tetsuya ; Ishimura, Ryosuke ; Kouno, Tsuguka ; Bedford, Lynn ; Mayer, R. John ; Lee, Myung-Shik ; Yamamoto, Masayuki ; Waguri, Satoshi ; Tanaka, Keiji ; Komatsu, Masaaki</creatorcontrib><description>The ubiquitin-proteasome system and autophagy are crucially important for proteostasis in cells. These pathways are interdependent, and dysfunction in either pathway causes accumulation of ubiquitin-positive aggregates, a hallmark of human pathological conditions. To elucidate in vivo compensatory action(s) against proteasomal dysfunction, we developed mice with reduced proteasome activity in their livers. The mutant mice exhibited severe liver damage, accompanied by formation of aggregates positive for ubiquitin and p62/Sqstm1, an adaptor protein for both selective autophagy and the anti-oxidative Keap1-Nrf2 pathway. These aggregates were selectively entrapped by autophagosomes, and pathological features of livers with impaired proteasome activity were exacerbated by simultaneous suppression of autophagy. In contrast, concomitant loss of p62/Sqstm1 had no apparent effect on the liver pathology though p62/Sqstm1 was indispensable for the aggregates formation. Furthermore, defective proteasome function led to transcriptional activation of the Nrf2, which served as a physiological adaptation. Our in vivo data suggest that cells contain networks of cellular defense mechanisms against defective proteostasis.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.580357</identifier><identifier>PMID: 25049227</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Animals ; Autophagy ; Cell Biology ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Immunoblotting ; Kelch-Like ECH-Associated Protein 1 ; Liver - metabolism ; Liver - pathology ; Liver - ultrastructure ; Mice, Knockout ; Mice, Transgenic ; Microscopy, Confocal ; Microscopy, Immunoelectron ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; Phagosomes - genetics ; Phagosomes - metabolism ; Phosphorylation ; Proteasome Endopeptidase Complex - genetics ; Proteasome Endopeptidase Complex - metabolism ; Sequestosome-1 Protein ; Signal Transduction ; Time Factors ; Ubiquitin - metabolism</subject><ispartof>The Journal of biological chemistry, 2014-09, Vol.289 (36), p.24944-24955</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-e4e7ab668105e4c686ccd463b94596bc4a9af381efa945b712145c1bdcc51fd43</citedby><cites>FETCH-LOGICAL-c509t-e4e7ab668105e4c686ccd463b94596bc4a9af381efa945b712145c1bdcc51fd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155663/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155663/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25049227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kageyama, Shun</creatorcontrib><creatorcontrib>Sou, Yu-shin</creatorcontrib><creatorcontrib>Uemura, Takefumi</creatorcontrib><creatorcontrib>Kametaka, Satoshi</creatorcontrib><creatorcontrib>Saito, Tetsuya</creatorcontrib><creatorcontrib>Ishimura, Ryosuke</creatorcontrib><creatorcontrib>Kouno, Tsuguka</creatorcontrib><creatorcontrib>Bedford, Lynn</creatorcontrib><creatorcontrib>Mayer, R. John</creatorcontrib><creatorcontrib>Lee, Myung-Shik</creatorcontrib><creatorcontrib>Yamamoto, Masayuki</creatorcontrib><creatorcontrib>Waguri, Satoshi</creatorcontrib><creatorcontrib>Tanaka, Keiji</creatorcontrib><creatorcontrib>Komatsu, Masaaki</creatorcontrib><title>Proteasome Dysfunction Activates Autophagy and the Keap1-Nrf2 Pathway</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The ubiquitin-proteasome system and autophagy are crucially important for proteostasis in cells. These pathways are interdependent, and dysfunction in either pathway causes accumulation of ubiquitin-positive aggregates, a hallmark of human pathological conditions. To elucidate in vivo compensatory action(s) against proteasomal dysfunction, we developed mice with reduced proteasome activity in their livers. The mutant mice exhibited severe liver damage, accompanied by formation of aggregates positive for ubiquitin and p62/Sqstm1, an adaptor protein for both selective autophagy and the anti-oxidative Keap1-Nrf2 pathway. These aggregates were selectively entrapped by autophagosomes, and pathological features of livers with impaired proteasome activity were exacerbated by simultaneous suppression of autophagy. In contrast, concomitant loss of p62/Sqstm1 had no apparent effect on the liver pathology though p62/Sqstm1 was indispensable for the aggregates formation. Furthermore, defective proteasome function led to transcriptional activation of the Nrf2, which served as a physiological adaptation. Our in vivo data suggest that cells contain networks of cellular defense mechanisms against defective proteostasis.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Cell Biology</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Immunoblotting</subject><subject>Kelch-Like ECH-Associated Protein 1</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Liver - ultrastructure</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Immunoelectron</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Phagosomes - genetics</subject><subject>Phagosomes - metabolism</subject><subject>Phosphorylation</subject><subject>Proteasome Endopeptidase Complex - genetics</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Sequestosome-1 Protein</subject><subject>Signal Transduction</subject><subject>Time Factors</subject><subject>Ubiquitin - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtPwzAMxiMEgvE4c0M9cumI2yRtL0gTjId4HkDiFqWpy4K2ZiTp0P57Mg0QHPDFlv35s_Uj5BDoEGjBTt5qPbwDYENe0pwXG2QAtMzTnMPLJhlQmkFaZbzcIbvev9EYrIJtspPxWGRZMSDjR2cDKm9nmJwvfdt3OhjbJaOYFiqgT0Z9sPOJel0mqmuSMMHkBtUc0nvXZsmjCpMPtdwnW62aejz4ynvk-WL8dHaV3j5cXp-NblPNaRVSZFioWogSKEemRSm0bpjI64rxStSaqUq1eQnYqtipC8iAcQ11ozWHtmH5Hjld-877eoaNxi44NZVzZ2bKLaVVRv6ddGYiX-1CMuBciDwaHH8ZOPveow9yZrzG6VR1aHsvgQvKS1bC6tbJWqqd9d5h-3MGqFzBlxG-XMGXa_hx4-j3dz_6b9pRUK0FGBktDDrptcFOY2Mc6iAba_41_wQ-UJRv</recordid><startdate>20140905</startdate><enddate>20140905</enddate><creator>Kageyama, Shun</creator><creator>Sou, Yu-shin</creator><creator>Uemura, Takefumi</creator><creator>Kametaka, Satoshi</creator><creator>Saito, Tetsuya</creator><creator>Ishimura, Ryosuke</creator><creator>Kouno, Tsuguka</creator><creator>Bedford, Lynn</creator><creator>Mayer, R. John</creator><creator>Lee, Myung-Shik</creator><creator>Yamamoto, Masayuki</creator><creator>Waguri, Satoshi</creator><creator>Tanaka, Keiji</creator><creator>Komatsu, Masaaki</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140905</creationdate><title>Proteasome Dysfunction Activates Autophagy and the Keap1-Nrf2 Pathway</title><author>Kageyama, Shun ; Sou, Yu-shin ; Uemura, Takefumi ; Kametaka, Satoshi ; Saito, Tetsuya ; Ishimura, Ryosuke ; Kouno, Tsuguka ; Bedford, Lynn ; Mayer, R. John ; Lee, Myung-Shik ; Yamamoto, Masayuki ; Waguri, Satoshi ; Tanaka, Keiji ; Komatsu, Masaaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-e4e7ab668105e4c686ccd463b94596bc4a9af381efa945b712145c1bdcc51fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Cell Biology</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Immunoblotting</topic><topic>Kelch-Like ECH-Associated Protein 1</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Liver - ultrastructure</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Immunoelectron</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Phagosomes - genetics</topic><topic>Phagosomes - metabolism</topic><topic>Phosphorylation</topic><topic>Proteasome Endopeptidase Complex - genetics</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Sequestosome-1 Protein</topic><topic>Signal Transduction</topic><topic>Time Factors</topic><topic>Ubiquitin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kageyama, Shun</creatorcontrib><creatorcontrib>Sou, Yu-shin</creatorcontrib><creatorcontrib>Uemura, Takefumi</creatorcontrib><creatorcontrib>Kametaka, Satoshi</creatorcontrib><creatorcontrib>Saito, Tetsuya</creatorcontrib><creatorcontrib>Ishimura, Ryosuke</creatorcontrib><creatorcontrib>Kouno, Tsuguka</creatorcontrib><creatorcontrib>Bedford, Lynn</creatorcontrib><creatorcontrib>Mayer, R. John</creatorcontrib><creatorcontrib>Lee, Myung-Shik</creatorcontrib><creatorcontrib>Yamamoto, Masayuki</creatorcontrib><creatorcontrib>Waguri, Satoshi</creatorcontrib><creatorcontrib>Tanaka, Keiji</creatorcontrib><creatorcontrib>Komatsu, Masaaki</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kageyama, Shun</au><au>Sou, Yu-shin</au><au>Uemura, Takefumi</au><au>Kametaka, Satoshi</au><au>Saito, Tetsuya</au><au>Ishimura, Ryosuke</au><au>Kouno, Tsuguka</au><au>Bedford, Lynn</au><au>Mayer, R. John</au><au>Lee, Myung-Shik</au><au>Yamamoto, Masayuki</au><au>Waguri, Satoshi</au><au>Tanaka, Keiji</au><au>Komatsu, Masaaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteasome Dysfunction Activates Autophagy and the Keap1-Nrf2 Pathway</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-09-05</date><risdate>2014</risdate><volume>289</volume><issue>36</issue><spage>24944</spage><epage>24955</epage><pages>24944-24955</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The ubiquitin-proteasome system and autophagy are crucially important for proteostasis in cells. These pathways are interdependent, and dysfunction in either pathway causes accumulation of ubiquitin-positive aggregates, a hallmark of human pathological conditions. To elucidate in vivo compensatory action(s) against proteasomal dysfunction, we developed mice with reduced proteasome activity in their livers. The mutant mice exhibited severe liver damage, accompanied by formation of aggregates positive for ubiquitin and p62/Sqstm1, an adaptor protein for both selective autophagy and the anti-oxidative Keap1-Nrf2 pathway. These aggregates were selectively entrapped by autophagosomes, and pathological features of livers with impaired proteasome activity were exacerbated by simultaneous suppression of autophagy. In contrast, concomitant loss of p62/Sqstm1 had no apparent effect on the liver pathology though p62/Sqstm1 was indispensable for the aggregates formation. Furthermore, defective proteasome function led to transcriptional activation of the Nrf2, which served as a physiological adaptation. Our in vivo data suggest that cells contain networks of cellular defense mechanisms against defective proteostasis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25049227</pmid><doi>10.1074/jbc.M114.580357</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2014-09, Vol.289 (36), p.24944-24955
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4155663
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Animals
Autophagy
Cell Biology
Cytoskeletal Proteins - genetics
Cytoskeletal Proteins - metabolism
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Immunoblotting
Kelch-Like ECH-Associated Protein 1
Liver - metabolism
Liver - pathology
Liver - ultrastructure
Mice, Knockout
Mice, Transgenic
Microscopy, Confocal
Microscopy, Immunoelectron
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
Phagosomes - genetics
Phagosomes - metabolism
Phosphorylation
Proteasome Endopeptidase Complex - genetics
Proteasome Endopeptidase Complex - metabolism
Sequestosome-1 Protein
Signal Transduction
Time Factors
Ubiquitin - metabolism
title Proteasome Dysfunction Activates Autophagy and the Keap1-Nrf2 Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteasome%20Dysfunction%20Activates%20Autophagy%20and%20the%20Keap1-Nrf2%20Pathway&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kageyama,%20Shun&rft.date=2014-09-05&rft.volume=289&rft.issue=36&rft.spage=24944&rft.epage=24955&rft.pages=24944-24955&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.580357&rft_dat=%3Cproquest_pubme%3E1560584814%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560584814&rft_id=info:pmid/25049227&rft_els_id=S0021925820316501&rfr_iscdi=true