Assessment of regularization techniques for electrocardiographic imaging

Abstract A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electrocardiology 2014-01, Vol.47 (1), p.20-28
Hauptverfasser: Milanič, Matija, PhD, Jazbinšek, Vojko, PhD, MacLeod, Robert S., PhD, Brooks, Dana H., PhD, Hren, Rok, PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 1
container_start_page 20
container_title Journal of electrocardiology
container_volume 47
creator Milanič, Matija, PhD
Jazbinšek, Vojko, PhD
MacLeod, Robert S., PhD
Brooks, Dana H., PhD
Hren, Rok, PhD
description Abstract A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions is still a subject of ongoing research. However there has been little rigorous comparison across methods proposed by different groups. This study systematically compared various regularization techniques for solving the ECGI problem under a unified simulation framework, consisting of both 1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and 2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different regularization techniques to solve the inverse problem of recovering epicardial potentials, and found that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov regularizations outperformed other methodologies and resulted in similar average reconstruction errors.
doi_str_mv 10.1016/j.jelectrocard.2013.10.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4154607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022073613005566</els_id><sourcerecordid>1490783755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-d6a57cb74503f9914cca95a15b115f83fc6e9b9fbbf77850c036c2e10c5fad183</originalsourceid><addsrcrecordid>eNqNUk1v1DAUtBAV3S78BRRx4pLl-SsfHCpVLaVIlXoonC3Hec46ZOPFTiqVX4-jLdXCqScfZt7M88wj5AOFDQVafOo3PQ5opuCNDu2GAeUJ2ACIV2RFJWd5JTi8JisAxnIoeXFKzmLsAaBmJXtDTpngRV0KuiI3FzFijDscp8zbLGA3Dzq433pyfswmNNvR_ZoxZtaH7MjV-S7o_daZzO1058buLTmxeoj47uldkx_XX75f3uS3d1-_XV7c5kYKNuVtoWVpmlJI4LauqTBG11JT2VAqbcWtKbBuats0tiwrCQZ4YRhSMNLqllZ8Tc4Puvu52WFr0uJBD2of0h7hUXnt1L_I6Laq8w9KUCmKFMaafHwSCH752aR2LhocBj2in6Oiooay4qWUifr5QDXBxxjQPttQUEsVqlfHVailigVLVaTh98eLPo_-zT4Rrg4ETHE9OAwqGoejwdaFJKla717mc_6fjBnc6IwefuIjxt7PYUyFKKoiU6Dul6NYboJyACmLgv8Bu7O5Eg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490783755</pqid></control><display><type>article</type><title>Assessment of regularization techniques for electrocardiographic imaging</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Milanič, Matija, PhD ; Jazbinšek, Vojko, PhD ; MacLeod, Robert S., PhD ; Brooks, Dana H., PhD ; Hren, Rok, PhD</creator><creatorcontrib>Milanič, Matija, PhD ; Jazbinšek, Vojko, PhD ; MacLeod, Robert S., PhD ; Brooks, Dana H., PhD ; Hren, Rok, PhD</creatorcontrib><description>Abstract A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions is still a subject of ongoing research. However there has been little rigorous comparison across methods proposed by different groups. This study systematically compared various regularization techniques for solving the ECGI problem under a unified simulation framework, consisting of both 1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and 2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different regularization techniques to solve the inverse problem of recovering epicardial potentials, and found that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov regularizations outperformed other methodologies and resulted in similar average reconstruction errors.</description><identifier>ISSN: 0022-0736</identifier><identifier>EISSN: 1532-8430</identifier><identifier>DOI: 10.1016/j.jelectrocard.2013.10.004</identifier><identifier>PMID: 24369741</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Body Surface Potential Mapping - methods ; Cardiovascular ; Computer Simulation ; Conjugate gradient ; Data Interpretation, Statistical ; Diagnosis, Computer-Assisted - methods ; Electrocardiographic inverse problem ; Heart Conduction System - physiology ; Heart Rate - physiology ; Humans ; MINRES method ; Models, Cardiovascular ; Reproducibility of Results ; Sensitivity and Specificity ; Tikhonov regularization ; Total variation ; Truncated singular value decomposition ; ν-method</subject><ispartof>Journal of electrocardiology, 2014-01, Vol.47 (1), p.20-28</ispartof><rights>Elsevier Inc.</rights><rights>2014 Elsevier Inc.</rights><rights>2013.</rights><rights>2013 Elsevier Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-d6a57cb74503f9914cca95a15b115f83fc6e9b9fbbf77850c036c2e10c5fad183</citedby><cites>FETCH-LOGICAL-c542t-d6a57cb74503f9914cca95a15b115f83fc6e9b9fbbf77850c036c2e10c5fad183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022073613005566$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24369741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Milanič, Matija, PhD</creatorcontrib><creatorcontrib>Jazbinšek, Vojko, PhD</creatorcontrib><creatorcontrib>MacLeod, Robert S., PhD</creatorcontrib><creatorcontrib>Brooks, Dana H., PhD</creatorcontrib><creatorcontrib>Hren, Rok, PhD</creatorcontrib><title>Assessment of regularization techniques for electrocardiographic imaging</title><title>Journal of electrocardiology</title><addtitle>J Electrocardiol</addtitle><description>Abstract A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions is still a subject of ongoing research. However there has been little rigorous comparison across methods proposed by different groups. This study systematically compared various regularization techniques for solving the ECGI problem under a unified simulation framework, consisting of both 1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and 2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different regularization techniques to solve the inverse problem of recovering epicardial potentials, and found that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov regularizations outperformed other methodologies and resulted in similar average reconstruction errors.</description><subject>Action Potentials - physiology</subject><subject>Body Surface Potential Mapping - methods</subject><subject>Cardiovascular</subject><subject>Computer Simulation</subject><subject>Conjugate gradient</subject><subject>Data Interpretation, Statistical</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Electrocardiographic inverse problem</subject><subject>Heart Conduction System - physiology</subject><subject>Heart Rate - physiology</subject><subject>Humans</subject><subject>MINRES method</subject><subject>Models, Cardiovascular</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Tikhonov regularization</subject><subject>Total variation</subject><subject>Truncated singular value decomposition</subject><subject>ν-method</subject><issn>0022-0736</issn><issn>1532-8430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1DAUtBAV3S78BRRx4pLl-SsfHCpVLaVIlXoonC3Hec46ZOPFTiqVX4-jLdXCqScfZt7M88wj5AOFDQVafOo3PQ5opuCNDu2GAeUJ2ACIV2RFJWd5JTi8JisAxnIoeXFKzmLsAaBmJXtDTpngRV0KuiI3FzFijDscp8zbLGA3Dzq433pyfswmNNvR_ZoxZtaH7MjV-S7o_daZzO1058buLTmxeoj47uldkx_XX75f3uS3d1-_XV7c5kYKNuVtoWVpmlJI4LauqTBG11JT2VAqbcWtKbBuats0tiwrCQZ4YRhSMNLqllZ8Tc4Puvu52WFr0uJBD2of0h7hUXnt1L_I6Laq8w9KUCmKFMaafHwSCH752aR2LhocBj2in6Oiooay4qWUifr5QDXBxxjQPttQUEsVqlfHVailigVLVaTh98eLPo_-zT4Rrg4ETHE9OAwqGoejwdaFJKla717mc_6fjBnc6IwefuIjxt7PYUyFKKoiU6Dul6NYboJyACmLgv8Bu7O5Eg</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Milanič, Matija, PhD</creator><creator>Jazbinšek, Vojko, PhD</creator><creator>MacLeod, Robert S., PhD</creator><creator>Brooks, Dana H., PhD</creator><creator>Hren, Rok, PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Assessment of regularization techniques for electrocardiographic imaging</title><author>Milanič, Matija, PhD ; Jazbinšek, Vojko, PhD ; MacLeod, Robert S., PhD ; Brooks, Dana H., PhD ; Hren, Rok, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-d6a57cb74503f9914cca95a15b115f83fc6e9b9fbbf77850c036c2e10c5fad183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials - physiology</topic><topic>Body Surface Potential Mapping - methods</topic><topic>Cardiovascular</topic><topic>Computer Simulation</topic><topic>Conjugate gradient</topic><topic>Data Interpretation, Statistical</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Electrocardiographic inverse problem</topic><topic>Heart Conduction System - physiology</topic><topic>Heart Rate - physiology</topic><topic>Humans</topic><topic>MINRES method</topic><topic>Models, Cardiovascular</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Tikhonov regularization</topic><topic>Total variation</topic><topic>Truncated singular value decomposition</topic><topic>ν-method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milanič, Matija, PhD</creatorcontrib><creatorcontrib>Jazbinšek, Vojko, PhD</creatorcontrib><creatorcontrib>MacLeod, Robert S., PhD</creatorcontrib><creatorcontrib>Brooks, Dana H., PhD</creatorcontrib><creatorcontrib>Hren, Rok, PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of electrocardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milanič, Matija, PhD</au><au>Jazbinšek, Vojko, PhD</au><au>MacLeod, Robert S., PhD</au><au>Brooks, Dana H., PhD</au><au>Hren, Rok, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of regularization techniques for electrocardiographic imaging</atitle><jtitle>Journal of electrocardiology</jtitle><addtitle>J Electrocardiol</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>47</volume><issue>1</issue><spage>20</spage><epage>28</epage><pages>20-28</pages><issn>0022-0736</issn><eissn>1532-8430</eissn><abstract>Abstract A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions is still a subject of ongoing research. However there has been little rigorous comparison across methods proposed by different groups. This study systematically compared various regularization techniques for solving the ECGI problem under a unified simulation framework, consisting of both 1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and 2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different regularization techniques to solve the inverse problem of recovering epicardial potentials, and found that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov regularizations outperformed other methodologies and resulted in similar average reconstruction errors.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24369741</pmid><doi>10.1016/j.jelectrocard.2013.10.004</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0736
ispartof Journal of electrocardiology, 2014-01, Vol.47 (1), p.20-28
issn 0022-0736
1532-8430
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4154607
source MEDLINE; Elsevier ScienceDirect Journals
subjects Action Potentials - physiology
Body Surface Potential Mapping - methods
Cardiovascular
Computer Simulation
Conjugate gradient
Data Interpretation, Statistical
Diagnosis, Computer-Assisted - methods
Electrocardiographic inverse problem
Heart Conduction System - physiology
Heart Rate - physiology
Humans
MINRES method
Models, Cardiovascular
Reproducibility of Results
Sensitivity and Specificity
Tikhonov regularization
Total variation
Truncated singular value decomposition
ν-method
title Assessment of regularization techniques for electrocardiographic imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20regularization%20techniques%20for%20electrocardiographic%20imaging&rft.jtitle=Journal%20of%20electrocardiology&rft.au=Milani%C4%8D,%20Matija,%20PhD&rft.date=2014-01-01&rft.volume=47&rft.issue=1&rft.spage=20&rft.epage=28&rft.pages=20-28&rft.issn=0022-0736&rft.eissn=1532-8430&rft_id=info:doi/10.1016/j.jelectrocard.2013.10.004&rft_dat=%3Cproquest_pubme%3E1490783755%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490783755&rft_id=info:pmid/24369741&rft_els_id=S0022073613005566&rfr_iscdi=true