Assessment of regularization techniques for electrocardiographic imaging
Abstract A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill...
Gespeichert in:
Veröffentlicht in: | Journal of electrocardiology 2014-01, Vol.47 (1), p.20-28 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 1 |
container_start_page | 20 |
container_title | Journal of electrocardiology |
container_volume | 47 |
creator | Milanič, Matija, PhD Jazbinšek, Vojko, PhD MacLeod, Robert S., PhD Brooks, Dana H., PhD Hren, Rok, PhD |
description | Abstract A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions is still a subject of ongoing research. However there has been little rigorous comparison across methods proposed by different groups. This study systematically compared various regularization techniques for solving the ECGI problem under a unified simulation framework, consisting of both 1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and 2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different regularization techniques to solve the inverse problem of recovering epicardial potentials, and found that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov regularizations outperformed other methodologies and resulted in similar average reconstruction errors. |
doi_str_mv | 10.1016/j.jelectrocard.2013.10.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4154607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022073613005566</els_id><sourcerecordid>1490783755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-d6a57cb74503f9914cca95a15b115f83fc6e9b9fbbf77850c036c2e10c5fad183</originalsourceid><addsrcrecordid>eNqNUk1v1DAUtBAV3S78BRRx4pLl-SsfHCpVLaVIlXoonC3Hec46ZOPFTiqVX4-jLdXCqScfZt7M88wj5AOFDQVafOo3PQ5opuCNDu2GAeUJ2ACIV2RFJWd5JTi8JisAxnIoeXFKzmLsAaBmJXtDTpngRV0KuiI3FzFijDscp8zbLGA3Dzq433pyfswmNNvR_ZoxZtaH7MjV-S7o_daZzO1058buLTmxeoj47uldkx_XX75f3uS3d1-_XV7c5kYKNuVtoWVpmlJI4LauqTBG11JT2VAqbcWtKbBuats0tiwrCQZ4YRhSMNLqllZ8Tc4Puvu52WFr0uJBD2of0h7hUXnt1L_I6Laq8w9KUCmKFMaafHwSCH752aR2LhocBj2in6Oiooay4qWUifr5QDXBxxjQPttQUEsVqlfHVailigVLVaTh98eLPo_-zT4Rrg4ETHE9OAwqGoejwdaFJKla717mc_6fjBnc6IwefuIjxt7PYUyFKKoiU6Dul6NYboJyACmLgv8Bu7O5Eg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490783755</pqid></control><display><type>article</type><title>Assessment of regularization techniques for electrocardiographic imaging</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Milanič, Matija, PhD ; Jazbinšek, Vojko, PhD ; MacLeod, Robert S., PhD ; Brooks, Dana H., PhD ; Hren, Rok, PhD</creator><creatorcontrib>Milanič, Matija, PhD ; Jazbinšek, Vojko, PhD ; MacLeod, Robert S., PhD ; Brooks, Dana H., PhD ; Hren, Rok, PhD</creatorcontrib><description>Abstract A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions is still a subject of ongoing research. However there has been little rigorous comparison across methods proposed by different groups. This study systematically compared various regularization techniques for solving the ECGI problem under a unified simulation framework, consisting of both 1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and 2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different regularization techniques to solve the inverse problem of recovering epicardial potentials, and found that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov regularizations outperformed other methodologies and resulted in similar average reconstruction errors.</description><identifier>ISSN: 0022-0736</identifier><identifier>EISSN: 1532-8430</identifier><identifier>DOI: 10.1016/j.jelectrocard.2013.10.004</identifier><identifier>PMID: 24369741</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Body Surface Potential Mapping - methods ; Cardiovascular ; Computer Simulation ; Conjugate gradient ; Data Interpretation, Statistical ; Diagnosis, Computer-Assisted - methods ; Electrocardiographic inverse problem ; Heart Conduction System - physiology ; Heart Rate - physiology ; Humans ; MINRES method ; Models, Cardiovascular ; Reproducibility of Results ; Sensitivity and Specificity ; Tikhonov regularization ; Total variation ; Truncated singular value decomposition ; ν-method</subject><ispartof>Journal of electrocardiology, 2014-01, Vol.47 (1), p.20-28</ispartof><rights>Elsevier Inc.</rights><rights>2014 Elsevier Inc.</rights><rights>2013.</rights><rights>2013 Elsevier Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-d6a57cb74503f9914cca95a15b115f83fc6e9b9fbbf77850c036c2e10c5fad183</citedby><cites>FETCH-LOGICAL-c542t-d6a57cb74503f9914cca95a15b115f83fc6e9b9fbbf77850c036c2e10c5fad183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022073613005566$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24369741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Milanič, Matija, PhD</creatorcontrib><creatorcontrib>Jazbinšek, Vojko, PhD</creatorcontrib><creatorcontrib>MacLeod, Robert S., PhD</creatorcontrib><creatorcontrib>Brooks, Dana H., PhD</creatorcontrib><creatorcontrib>Hren, Rok, PhD</creatorcontrib><title>Assessment of regularization techniques for electrocardiographic imaging</title><title>Journal of electrocardiology</title><addtitle>J Electrocardiol</addtitle><description>Abstract A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions is still a subject of ongoing research. However there has been little rigorous comparison across methods proposed by different groups. This study systematically compared various regularization techniques for solving the ECGI problem under a unified simulation framework, consisting of both 1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and 2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different regularization techniques to solve the inverse problem of recovering epicardial potentials, and found that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov regularizations outperformed other methodologies and resulted in similar average reconstruction errors.</description><subject>Action Potentials - physiology</subject><subject>Body Surface Potential Mapping - methods</subject><subject>Cardiovascular</subject><subject>Computer Simulation</subject><subject>Conjugate gradient</subject><subject>Data Interpretation, Statistical</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Electrocardiographic inverse problem</subject><subject>Heart Conduction System - physiology</subject><subject>Heart Rate - physiology</subject><subject>Humans</subject><subject>MINRES method</subject><subject>Models, Cardiovascular</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Tikhonov regularization</subject><subject>Total variation</subject><subject>Truncated singular value decomposition</subject><subject>ν-method</subject><issn>0022-0736</issn><issn>1532-8430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1DAUtBAV3S78BRRx4pLl-SsfHCpVLaVIlXoonC3Hec46ZOPFTiqVX4-jLdXCqScfZt7M88wj5AOFDQVafOo3PQ5opuCNDu2GAeUJ2ACIV2RFJWd5JTi8JisAxnIoeXFKzmLsAaBmJXtDTpngRV0KuiI3FzFijDscp8zbLGA3Dzq433pyfswmNNvR_ZoxZtaH7MjV-S7o_daZzO1058buLTmxeoj47uldkx_XX75f3uS3d1-_XV7c5kYKNuVtoWVpmlJI4LauqTBG11JT2VAqbcWtKbBuats0tiwrCQZ4YRhSMNLqllZ8Tc4Puvu52WFr0uJBD2of0h7hUXnt1L_I6Laq8w9KUCmKFMaafHwSCH752aR2LhocBj2in6Oiooay4qWUifr5QDXBxxjQPttQUEsVqlfHVailigVLVaTh98eLPo_-zT4Rrg4ETHE9OAwqGoejwdaFJKla717mc_6fjBnc6IwefuIjxt7PYUyFKKoiU6Dul6NYboJyACmLgv8Bu7O5Eg</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Milanič, Matija, PhD</creator><creator>Jazbinšek, Vojko, PhD</creator><creator>MacLeod, Robert S., PhD</creator><creator>Brooks, Dana H., PhD</creator><creator>Hren, Rok, PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Assessment of regularization techniques for electrocardiographic imaging</title><author>Milanič, Matija, PhD ; Jazbinšek, Vojko, PhD ; MacLeod, Robert S., PhD ; Brooks, Dana H., PhD ; Hren, Rok, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-d6a57cb74503f9914cca95a15b115f83fc6e9b9fbbf77850c036c2e10c5fad183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials - physiology</topic><topic>Body Surface Potential Mapping - methods</topic><topic>Cardiovascular</topic><topic>Computer Simulation</topic><topic>Conjugate gradient</topic><topic>Data Interpretation, Statistical</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Electrocardiographic inverse problem</topic><topic>Heart Conduction System - physiology</topic><topic>Heart Rate - physiology</topic><topic>Humans</topic><topic>MINRES method</topic><topic>Models, Cardiovascular</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Tikhonov regularization</topic><topic>Total variation</topic><topic>Truncated singular value decomposition</topic><topic>ν-method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milanič, Matija, PhD</creatorcontrib><creatorcontrib>Jazbinšek, Vojko, PhD</creatorcontrib><creatorcontrib>MacLeod, Robert S., PhD</creatorcontrib><creatorcontrib>Brooks, Dana H., PhD</creatorcontrib><creatorcontrib>Hren, Rok, PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of electrocardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milanič, Matija, PhD</au><au>Jazbinšek, Vojko, PhD</au><au>MacLeod, Robert S., PhD</au><au>Brooks, Dana H., PhD</au><au>Hren, Rok, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of regularization techniques for electrocardiographic imaging</atitle><jtitle>Journal of electrocardiology</jtitle><addtitle>J Electrocardiol</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>47</volume><issue>1</issue><spage>20</spage><epage>28</epage><pages>20-28</pages><issn>0022-0736</issn><eissn>1532-8430</eissn><abstract>Abstract A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions is still a subject of ongoing research. However there has been little rigorous comparison across methods proposed by different groups. This study systematically compared various regularization techniques for solving the ECGI problem under a unified simulation framework, consisting of both 1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and 2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different regularization techniques to solve the inverse problem of recovering epicardial potentials, and found that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov regularizations outperformed other methodologies and resulted in similar average reconstruction errors.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24369741</pmid><doi>10.1016/j.jelectrocard.2013.10.004</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0736 |
ispartof | Journal of electrocardiology, 2014-01, Vol.47 (1), p.20-28 |
issn | 0022-0736 1532-8430 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4154607 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Action Potentials - physiology Body Surface Potential Mapping - methods Cardiovascular Computer Simulation Conjugate gradient Data Interpretation, Statistical Diagnosis, Computer-Assisted - methods Electrocardiographic inverse problem Heart Conduction System - physiology Heart Rate - physiology Humans MINRES method Models, Cardiovascular Reproducibility of Results Sensitivity and Specificity Tikhonov regularization Total variation Truncated singular value decomposition ν-method |
title | Assessment of regularization techniques for electrocardiographic imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20regularization%20techniques%20for%20electrocardiographic%20imaging&rft.jtitle=Journal%20of%20electrocardiology&rft.au=Milani%C4%8D,%20Matija,%20PhD&rft.date=2014-01-01&rft.volume=47&rft.issue=1&rft.spage=20&rft.epage=28&rft.pages=20-28&rft.issn=0022-0736&rft.eissn=1532-8430&rft_id=info:doi/10.1016/j.jelectrocard.2013.10.004&rft_dat=%3Cproquest_pubme%3E1490783755%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490783755&rft_id=info:pmid/24369741&rft_els_id=S0022073613005566&rfr_iscdi=true |