A Model for Genome Size Evolution
We present a model for genome size evolution that takes into account both local mutations such as small insertions and small deletions, and large chromosomal rearrangements such as duplications and large deletions. We introduce the possibility of undergoing several mutations within one generation. T...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2014-09, Vol.76 (9), p.2249-2291 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2291 |
---|---|
container_issue | 9 |
container_start_page | 2249 |
container_title | Bulletin of mathematical biology |
container_volume | 76 |
creator | Fischer, Stephan Bernard, Samuel Beslon, Guillaume Knibbe, Carole |
description | We present a model for genome size evolution that takes into account both local mutations such as small insertions and small deletions, and large chromosomal rearrangements such as duplications and large deletions. We introduce the possibility of undergoing several mutations within one generation. The model, albeit minimalist, reveals a non-trivial spontaneous dynamics of genome size: in the absence of selection, an arbitrary large part of genomes remains beneath a finite size, even for a duplication rate 2.6-fold higher than the rate of large deletions, and even if there is also a systematic bias toward small insertions compared to small deletions. Specifically, we show that the condition of existence of an asymptotic stationary distribution for genome size non-trivially depends on the rates and mean sizes of the different mutation types. We also give upper bounds for the median and other quantiles of the genome size distribution, and argue that these bounds cannot be overcome by selection. Taken together, our results show that the spontaneous dynamics of genome size naturally prevents it from growing infinitely, even in cases where intuition would suggest an infinite growth. Using quantitative numerical examples, we show that, in practice, a shrinkage bias appears very quickly in genomes undergoing mutation accumulation, even though DNA gains and losses appear to be perfectly symmetrical at first sight. We discuss this spontaneous dynamics in the light of the other evolutionary forces proposed in the literature and argue that it provides them a stability-related size limit below which they can act. |
doi_str_mv | 10.1007/s11538-014-9997-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4153982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1560580019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-af1ab6ced8e540a2d091d956385d8f7bd24ba259b7702fe1b2800fc4cb5959ef3</originalsourceid><addsrcrecordid>eNp1kUtLxDAUhYMoOj5-gBupuNFF9d40aZONMAzjKIy4UNchbdOx0mk0mQ7orzdjVUbBVSD3O-c-DiGHCOcIkF14RJ6IGJDFUsosFhtkgJzSWKZAN8kAQNJYUAY7ZNf7ZwgamchtskM5MpqxdECOh9GtLU0TVdZFE9PauYnu63cTjZe26Ra1bffJVqUbbw6-3j3yeDV-GF3H07vJzWg4jQuesUWsK9R5WphSGM5A0xIklpKnieClqLK8pCzXlMs8y4BWBnMqAKqCFTmXXJoq2SOXve9Ll89NWZh24XSjXlw91-5NWV2r35W2flIzu1QsHEEKGgzOeoOnP7Lr4VSt_gBBghRsiYE9_Wrm7Gtn_ELNa1-YptGtsZ1XyFPgYUCUAT35gz7bzrXhFJ8UpjxJIVDYU4Wz3jtT_UyAoFZhqT6sMARTq7CUCJqj9Y1_FN_pBID2gA-ldmbcWut_XT8ARLac5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560165360</pqid></control><display><type>article</type><title>A Model for Genome Size Evolution</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fischer, Stephan ; Bernard, Samuel ; Beslon, Guillaume ; Knibbe, Carole</creator><creatorcontrib>Fischer, Stephan ; Bernard, Samuel ; Beslon, Guillaume ; Knibbe, Carole</creatorcontrib><description>We present a model for genome size evolution that takes into account both local mutations such as small insertions and small deletions, and large chromosomal rearrangements such as duplications and large deletions. We introduce the possibility of undergoing several mutations within one generation. The model, albeit minimalist, reveals a non-trivial spontaneous dynamics of genome size: in the absence of selection, an arbitrary large part of genomes remains beneath a finite size, even for a duplication rate 2.6-fold higher than the rate of large deletions, and even if there is also a systematic bias toward small insertions compared to small deletions. Specifically, we show that the condition of existence of an asymptotic stationary distribution for genome size non-trivially depends on the rates and mean sizes of the different mutation types. We also give upper bounds for the median and other quantiles of the genome size distribution, and argue that these bounds cannot be overcome by selection. Taken together, our results show that the spontaneous dynamics of genome size naturally prevents it from growing infinitely, even in cases where intuition would suggest an infinite growth. Using quantitative numerical examples, we show that, in practice, a shrinkage bias appears very quickly in genomes undergoing mutation accumulation, even though DNA gains and losses appear to be perfectly symmetrical at first sight. We discuss this spontaneous dynamics in the light of the other evolutionary forces proposed in the literature and argue that it provides them a stability-related size limit below which they can act.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-014-9997-8</identifier><identifier>PMID: 25142746</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bioinformatics ; Cell Biology ; Chromosomes - genetics ; Computer Science ; Computer Simulation ; Data Structures and Algorithms ; Evolution, Molecular ; Genome - genetics ; Genome Size - genetics ; Life Sciences ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Models, Genetic ; Mutation - genetics ; Original ; Original Article ; Quantitative Methods</subject><ispartof>Bulletin of mathematical biology, 2014-09, Vol.76 (9), p.2249-2291</ispartof><rights>The Author(s) 2014</rights><rights>Society for Mathematical Biology 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-af1ab6ced8e540a2d091d956385d8f7bd24ba259b7702fe1b2800fc4cb5959ef3</citedby><cites>FETCH-LOGICAL-c574t-af1ab6ced8e540a2d091d956385d8f7bd24ba259b7702fe1b2800fc4cb5959ef3</cites><orcidid>0000-0002-2026-2580 ; 0000-0001-8562-0732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-014-9997-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-014-9997-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25142746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01090984$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fischer, Stephan</creatorcontrib><creatorcontrib>Bernard, Samuel</creatorcontrib><creatorcontrib>Beslon, Guillaume</creatorcontrib><creatorcontrib>Knibbe, Carole</creatorcontrib><title>A Model for Genome Size Evolution</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>We present a model for genome size evolution that takes into account both local mutations such as small insertions and small deletions, and large chromosomal rearrangements such as duplications and large deletions. We introduce the possibility of undergoing several mutations within one generation. The model, albeit minimalist, reveals a non-trivial spontaneous dynamics of genome size: in the absence of selection, an arbitrary large part of genomes remains beneath a finite size, even for a duplication rate 2.6-fold higher than the rate of large deletions, and even if there is also a systematic bias toward small insertions compared to small deletions. Specifically, we show that the condition of existence of an asymptotic stationary distribution for genome size non-trivially depends on the rates and mean sizes of the different mutation types. We also give upper bounds for the median and other quantiles of the genome size distribution, and argue that these bounds cannot be overcome by selection. Taken together, our results show that the spontaneous dynamics of genome size naturally prevents it from growing infinitely, even in cases where intuition would suggest an infinite growth. Using quantitative numerical examples, we show that, in practice, a shrinkage bias appears very quickly in genomes undergoing mutation accumulation, even though DNA gains and losses appear to be perfectly symmetrical at first sight. We discuss this spontaneous dynamics in the light of the other evolutionary forces proposed in the literature and argue that it provides them a stability-related size limit below which they can act.</description><subject>Bioinformatics</subject><subject>Cell Biology</subject><subject>Chromosomes - genetics</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Data Structures and Algorithms</subject><subject>Evolution, Molecular</subject><subject>Genome - genetics</subject><subject>Genome Size - genetics</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Genetic</subject><subject>Mutation - genetics</subject><subject>Original</subject><subject>Original Article</subject><subject>Quantitative Methods</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtLxDAUhYMoOj5-gBupuNFF9d40aZONMAzjKIy4UNchbdOx0mk0mQ7orzdjVUbBVSD3O-c-DiGHCOcIkF14RJ6IGJDFUsosFhtkgJzSWKZAN8kAQNJYUAY7ZNf7ZwgamchtskM5MpqxdECOh9GtLU0TVdZFE9PauYnu63cTjZe26Ra1bffJVqUbbw6-3j3yeDV-GF3H07vJzWg4jQuesUWsK9R5WphSGM5A0xIklpKnieClqLK8pCzXlMs8y4BWBnMqAKqCFTmXXJoq2SOXve9Ll89NWZh24XSjXlw91-5NWV2r35W2flIzu1QsHEEKGgzOeoOnP7Lr4VSt_gBBghRsiYE9_Wrm7Gtn_ELNa1-YptGtsZ1XyFPgYUCUAT35gz7bzrXhFJ8UpjxJIVDYU4Wz3jtT_UyAoFZhqT6sMARTq7CUCJqj9Y1_FN_pBID2gA-ldmbcWut_XT8ARLac5w</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Fischer, Stephan</creator><creator>Bernard, Samuel</creator><creator>Beslon, Guillaume</creator><creator>Knibbe, Carole</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2026-2580</orcidid><orcidid>https://orcid.org/0000-0001-8562-0732</orcidid></search><sort><creationdate>20140901</creationdate><title>A Model for Genome Size Evolution</title><author>Fischer, Stephan ; Bernard, Samuel ; Beslon, Guillaume ; Knibbe, Carole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-af1ab6ced8e540a2d091d956385d8f7bd24ba259b7702fe1b2800fc4cb5959ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bioinformatics</topic><topic>Cell Biology</topic><topic>Chromosomes - genetics</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Data Structures and Algorithms</topic><topic>Evolution, Molecular</topic><topic>Genome - genetics</topic><topic>Genome Size - genetics</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Genetic</topic><topic>Mutation - genetics</topic><topic>Original</topic><topic>Original Article</topic><topic>Quantitative Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischer, Stephan</creatorcontrib><creatorcontrib>Bernard, Samuel</creatorcontrib><creatorcontrib>Beslon, Guillaume</creatorcontrib><creatorcontrib>Knibbe, Carole</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, Stephan</au><au>Bernard, Samuel</au><au>Beslon, Guillaume</au><au>Knibbe, Carole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model for Genome Size Evolution</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>76</volume><issue>9</issue><spage>2249</spage><epage>2291</epage><pages>2249-2291</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>We present a model for genome size evolution that takes into account both local mutations such as small insertions and small deletions, and large chromosomal rearrangements such as duplications and large deletions. We introduce the possibility of undergoing several mutations within one generation. The model, albeit minimalist, reveals a non-trivial spontaneous dynamics of genome size: in the absence of selection, an arbitrary large part of genomes remains beneath a finite size, even for a duplication rate 2.6-fold higher than the rate of large deletions, and even if there is also a systematic bias toward small insertions compared to small deletions. Specifically, we show that the condition of existence of an asymptotic stationary distribution for genome size non-trivially depends on the rates and mean sizes of the different mutation types. We also give upper bounds for the median and other quantiles of the genome size distribution, and argue that these bounds cannot be overcome by selection. Taken together, our results show that the spontaneous dynamics of genome size naturally prevents it from growing infinitely, even in cases where intuition would suggest an infinite growth. Using quantitative numerical examples, we show that, in practice, a shrinkage bias appears very quickly in genomes undergoing mutation accumulation, even though DNA gains and losses appear to be perfectly symmetrical at first sight. We discuss this spontaneous dynamics in the light of the other evolutionary forces proposed in the literature and argue that it provides them a stability-related size limit below which they can act.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>25142746</pmid><doi>10.1007/s11538-014-9997-8</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0002-2026-2580</orcidid><orcidid>https://orcid.org/0000-0001-8562-0732</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2014-09, Vol.76 (9), p.2249-2291 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4153982 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Bioinformatics Cell Biology Chromosomes - genetics Computer Science Computer Simulation Data Structures and Algorithms Evolution, Molecular Genome - genetics Genome Size - genetics Life Sciences Mathematical and Computational Biology Mathematics Mathematics and Statistics Models, Genetic Mutation - genetics Original Original Article Quantitative Methods |
title | A Model for Genome Size Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20for%20Genome%20Size%20Evolution&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Fischer,%20Stephan&rft.date=2014-09-01&rft.volume=76&rft.issue=9&rft.spage=2249&rft.epage=2291&rft.pages=2249-2291&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-014-9997-8&rft_dat=%3Cproquest_pubme%3E1560580019%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560165360&rft_id=info:pmid/25142746&rfr_iscdi=true |