A numerical method for analysis of in vitro time-dependent inhibition data. Part 1. Theoretical considerations

Inhibition of cytochromes P450 by time-dependent inhibitors (TDI) is a major cause of clinical drug-drug interactions. It is often difficult to predict in vivo drug interactions based on in vitro TDI data. In part 1 of these manuscripts, we describe a numerical method that can directly estimate TDI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug metabolism and disposition 2014-09, Vol.42 (9), p.1575-1586
Hauptverfasser: Nagar, Swati, Jones, Jeffrey P, Korzekwa, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1586
container_issue 9
container_start_page 1575
container_title Drug metabolism and disposition
container_volume 42
creator Nagar, Swati
Jones, Jeffrey P
Korzekwa, Ken
description Inhibition of cytochromes P450 by time-dependent inhibitors (TDI) is a major cause of clinical drug-drug interactions. It is often difficult to predict in vivo drug interactions based on in vitro TDI data. In part 1 of these manuscripts, we describe a numerical method that can directly estimate TDI parameters for a number of kinetic schemes. Datasets were simulated for Michaelis-Menten (MM) and several atypical kinetic schemes. Ordinary differential equations were solved directly to parameterize kinetic constants. For MM kinetics, much better estimates of KI can be obtained with the numerical method, and even IC50 shift data can provide meaningful estimates of TDI kinetic parameters. The standard replot method can be modified to fit non-MM data, but normal experimental error precludes this approach. Non-MM kinetic schemes can be easily incorporated into the numerical method, and the numerical method consistently predicts the correct model at errors of 10% or less. Quasi-irreversible inactivation and partial inactivation can be modeled easily with the numerical method. The utility of the numerical method for the analyses of experimental TDI data is provided in our companion manuscript in this issue of Drug Metabolism and Disposition (Korzekwa et al., 2014b).
doi_str_mv 10.1124/dmd.114.058289
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4152869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24939654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-f2842334ac6798cc68db6da9c5d667b5e8dd27881e060bcdc0a18077790299e83</originalsourceid><addsrcrecordid>eNpVkE9LAzEQxYMotlavHiVfYNdkN5tNLkIp_oOCHip4W7JJ1o3sJiVJC_32plaLnt4wM-_N8APgGqMc44LcqlGlguSoYgXjJ2CKqwJnCPH3UzBNgjJeVXQCLkL4RAgTUvJzMCkILzmtyBTYObSbUXsjxQBHHXunYOc8FFYMu2ACdB00Fm5N9A5GM-pM6bW2StuY-r1pTTTOQiWiyOGr8BHiHK567byO35nS2WCU9mK_Fy7BWSeGoK9-dAbeHu5Xi6ds-fL4vJgvM1lyFLOuYKQoSyIkrTmTkjLVUiW4rBSldVtpplRRM4Y1oqiVSiKBGarrmqOCc83KGbg75K437aiVTO96MTRrb0bhd40Tpvk_saZvPty2IYkfozwF5IcA6V0IXndHL0bNnnyTyKeCNAfyyXDz9-Jx_Rd1-QX4kYHp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A numerical method for analysis of in vitro time-dependent inhibition data. Part 1. Theoretical considerations</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Nagar, Swati ; Jones, Jeffrey P ; Korzekwa, Ken</creator><creatorcontrib>Nagar, Swati ; Jones, Jeffrey P ; Korzekwa, Ken</creatorcontrib><description>Inhibition of cytochromes P450 by time-dependent inhibitors (TDI) is a major cause of clinical drug-drug interactions. It is often difficult to predict in vivo drug interactions based on in vitro TDI data. In part 1 of these manuscripts, we describe a numerical method that can directly estimate TDI parameters for a number of kinetic schemes. Datasets were simulated for Michaelis-Menten (MM) and several atypical kinetic schemes. Ordinary differential equations were solved directly to parameterize kinetic constants. For MM kinetics, much better estimates of KI can be obtained with the numerical method, and even IC50 shift data can provide meaningful estimates of TDI kinetic parameters. The standard replot method can be modified to fit non-MM data, but normal experimental error precludes this approach. Non-MM kinetic schemes can be easily incorporated into the numerical method, and the numerical method consistently predicts the correct model at errors of 10% or less. Quasi-irreversible inactivation and partial inactivation can be modeled easily with the numerical method. The utility of the numerical method for the analyses of experimental TDI data is provided in our companion manuscript in this issue of Drug Metabolism and Disposition (Korzekwa et al., 2014b).</description><identifier>ISSN: 0090-9556</identifier><identifier>EISSN: 1521-009X</identifier><identifier>DOI: 10.1124/dmd.114.058289</identifier><identifier>PMID: 24939654</identifier><language>eng</language><publisher>United States: The American Society for Pharmacology and Experimental Therapeutics</publisher><subject>Algorithms ; Cytochrome P-450 Enzyme System - metabolism ; Drug Interactions - physiology ; Enzyme Inhibitors - pharmacology ; Humans ; In Vitro Techniques ; Kinetics ; Models, Theoretical ; Statistics as Topic - methods</subject><ispartof>Drug metabolism and disposition, 2014-09, Vol.42 (9), p.1575-1586</ispartof><rights>Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.</rights><rights>Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-f2842334ac6798cc68db6da9c5d667b5e8dd27881e060bcdc0a18077790299e83</citedby><cites>FETCH-LOGICAL-c390t-f2842334ac6798cc68db6da9c5d667b5e8dd27881e060bcdc0a18077790299e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24939654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagar, Swati</creatorcontrib><creatorcontrib>Jones, Jeffrey P</creatorcontrib><creatorcontrib>Korzekwa, Ken</creatorcontrib><title>A numerical method for analysis of in vitro time-dependent inhibition data. Part 1. Theoretical considerations</title><title>Drug metabolism and disposition</title><addtitle>Drug Metab Dispos</addtitle><description>Inhibition of cytochromes P450 by time-dependent inhibitors (TDI) is a major cause of clinical drug-drug interactions. It is often difficult to predict in vivo drug interactions based on in vitro TDI data. In part 1 of these manuscripts, we describe a numerical method that can directly estimate TDI parameters for a number of kinetic schemes. Datasets were simulated for Michaelis-Menten (MM) and several atypical kinetic schemes. Ordinary differential equations were solved directly to parameterize kinetic constants. For MM kinetics, much better estimates of KI can be obtained with the numerical method, and even IC50 shift data can provide meaningful estimates of TDI kinetic parameters. The standard replot method can be modified to fit non-MM data, but normal experimental error precludes this approach. Non-MM kinetic schemes can be easily incorporated into the numerical method, and the numerical method consistently predicts the correct model at errors of 10% or less. Quasi-irreversible inactivation and partial inactivation can be modeled easily with the numerical method. The utility of the numerical method for the analyses of experimental TDI data is provided in our companion manuscript in this issue of Drug Metabolism and Disposition (Korzekwa et al., 2014b).</description><subject>Algorithms</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Drug Interactions - physiology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Kinetics</subject><subject>Models, Theoretical</subject><subject>Statistics as Topic - methods</subject><issn>0090-9556</issn><issn>1521-009X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE9LAzEQxYMotlavHiVfYNdkN5tNLkIp_oOCHip4W7JJ1o3sJiVJC_32plaLnt4wM-_N8APgGqMc44LcqlGlguSoYgXjJ2CKqwJnCPH3UzBNgjJeVXQCLkL4RAgTUvJzMCkILzmtyBTYObSbUXsjxQBHHXunYOc8FFYMu2ACdB00Fm5N9A5GM-pM6bW2StuY-r1pTTTOQiWiyOGr8BHiHK567byO35nS2WCU9mK_Fy7BWSeGoK9-dAbeHu5Xi6ds-fL4vJgvM1lyFLOuYKQoSyIkrTmTkjLVUiW4rBSldVtpplRRM4Y1oqiVSiKBGarrmqOCc83KGbg75K437aiVTO96MTRrb0bhd40Tpvk_saZvPty2IYkfozwF5IcA6V0IXndHL0bNnnyTyKeCNAfyyXDz9-Jx_Rd1-QX4kYHp</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Nagar, Swati</creator><creator>Jones, Jeffrey P</creator><creator>Korzekwa, Ken</creator><general>The American Society for Pharmacology and Experimental Therapeutics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140901</creationdate><title>A numerical method for analysis of in vitro time-dependent inhibition data. Part 1. Theoretical considerations</title><author>Nagar, Swati ; Jones, Jeffrey P ; Korzekwa, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-f2842334ac6798cc68db6da9c5d667b5e8dd27881e060bcdc0a18077790299e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Drug Interactions - physiology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Kinetics</topic><topic>Models, Theoretical</topic><topic>Statistics as Topic - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagar, Swati</creatorcontrib><creatorcontrib>Jones, Jeffrey P</creatorcontrib><creatorcontrib>Korzekwa, Ken</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Drug metabolism and disposition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagar, Swati</au><au>Jones, Jeffrey P</au><au>Korzekwa, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical method for analysis of in vitro time-dependent inhibition data. Part 1. Theoretical considerations</atitle><jtitle>Drug metabolism and disposition</jtitle><addtitle>Drug Metab Dispos</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>42</volume><issue>9</issue><spage>1575</spage><epage>1586</epage><pages>1575-1586</pages><issn>0090-9556</issn><eissn>1521-009X</eissn><abstract>Inhibition of cytochromes P450 by time-dependent inhibitors (TDI) is a major cause of clinical drug-drug interactions. It is often difficult to predict in vivo drug interactions based on in vitro TDI data. In part 1 of these manuscripts, we describe a numerical method that can directly estimate TDI parameters for a number of kinetic schemes. Datasets were simulated for Michaelis-Menten (MM) and several atypical kinetic schemes. Ordinary differential equations were solved directly to parameterize kinetic constants. For MM kinetics, much better estimates of KI can be obtained with the numerical method, and even IC50 shift data can provide meaningful estimates of TDI kinetic parameters. The standard replot method can be modified to fit non-MM data, but normal experimental error precludes this approach. Non-MM kinetic schemes can be easily incorporated into the numerical method, and the numerical method consistently predicts the correct model at errors of 10% or less. Quasi-irreversible inactivation and partial inactivation can be modeled easily with the numerical method. The utility of the numerical method for the analyses of experimental TDI data is provided in our companion manuscript in this issue of Drug Metabolism and Disposition (Korzekwa et al., 2014b).</abstract><cop>United States</cop><pub>The American Society for Pharmacology and Experimental Therapeutics</pub><pmid>24939654</pmid><doi>10.1124/dmd.114.058289</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-9556
ispartof Drug metabolism and disposition, 2014-09, Vol.42 (9), p.1575-1586
issn 0090-9556
1521-009X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4152869
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Cytochrome P-450 Enzyme System - metabolism
Drug Interactions - physiology
Enzyme Inhibitors - pharmacology
Humans
In Vitro Techniques
Kinetics
Models, Theoretical
Statistics as Topic - methods
title A numerical method for analysis of in vitro time-dependent inhibition data. Part 1. Theoretical considerations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20method%20for%20analysis%20of%20in%20vitro%20time-dependent%20inhibition%20data.%20Part%201.%20Theoretical%20considerations&rft.jtitle=Drug%20metabolism%20and%20disposition&rft.au=Nagar,%20Swati&rft.date=2014-09-01&rft.volume=42&rft.issue=9&rft.spage=1575&rft.epage=1586&rft.pages=1575-1586&rft.issn=0090-9556&rft.eissn=1521-009X&rft_id=info:doi/10.1124/dmd.114.058289&rft_dat=%3Cpubmed_cross%3E24939654%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24939654&rfr_iscdi=true